Pregunta
Solve for \( w \), \[ -6(w-9)=-3 w+27 \] Simplify your answer as much as possible, \( w=\square \)
Ask by Rojas Elliott. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( w = 9 \)
Solución
To solve for \( w \) in the equation:
\[
-6(w - 9) = -3w + 27
\]
**Step 1:** Distribute \(-6\) on the left side.
\[
-6w + 54 = -3w + 27
\]
**Step 2:** Move all terms involving \( w \) to one side and constants to the other side. Add \( 3w \) to both sides:
\[
-6w + 3w + 54 = 27
\]
\[
-3w + 54 = 27
\]
**Step 3:** Subtract \( 54 \) from both sides to isolate the term with \( w \):
\[
-3w = 27 - 54
\]
\[
-3w = -27
\]
**Step 4:** Divide both sides by \(-3\) to solve for \( w \):
\[
w = \frac{-27}{-3}
\]
\[
w = 9
\]
So, the solution is:
\[
w = 9
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
Let's solve the equation step by step. Starting with: \[ -6(w - 9) = -3w + 27 \] Distributing \(-6\) on the left side: \[ -6w + 54 = -3w + 27 \] Next, we can get all the terms involving \(w\) on one side and constant terms on the other. Let's add \(6w\) to both sides: \[ 54 = 3w + 27 \] Now, subtract \(27\) from both sides to isolate the term with \(w\): \[ 54 - 27 = 3w \] \[ 27 = 3w \] Finally, divide both sides by \(3\) to solve for \(w\): \[ w = \frac{27}{3} = 9 \] So, the solution is: \( w = 9 \)
preguntas relacionadas
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium