Pregunta
upstudy study bank question image url

\begin{tabular}{l} Question 8 \\ Solve for \( x x^{2} \) \\ \( 7-\frac{18}{(6 x+4)^{-13}}+6=27 \) \\ Round to 3 decimal places \\ Rod your answer \\ \hline\end{tabular}

Ask by Elliott Reid. in Canada
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( x \approx -0.830 \)

Solución

Solve the equation \( 7-\frac{18}{(6x+4)^{-13}}+6=27 \). Solve the equation by following steps: - step0: Solve for \(x\): \(7-\frac{18}{\left(6x+4\right)^{-13}}+6=27\) - step1: Find the domain: \(7-\frac{18}{\left(6x+4\right)^{-13}}+6=27,x\neq -\frac{2}{3}\) - step2: Simplify: \(13-18\left(6x+4\right)^{13}=27\) - step3: Move the expression to the left side: \(13-18\left(6x+4\right)^{13}-27=0\) - step4: Subtract the numbers: \(-14-18\left(6x+4\right)^{13}=0\) - step5: Rewrite the expression: \(-18\left(6x+4\right)^{13}=14\) - step6: Change the sign: \(18\left(6x+4\right)^{13}=-14\) - step7: Divide both sides: \(\frac{18\left(6x+4\right)^{13}}{18}=\frac{-14}{18}\) - step8: Divide the numbers: \(\left(6x+4\right)^{13}=-\frac{7}{9}\) - step9: Simplify the equation: \(\sqrt[13]{\left(6x+4\right)^{13}}=\sqrt[13]{-\frac{7}{9}}\) - step10: Calculate: \(6x+4=\sqrt[13]{-\frac{7}{9}}\) - step11: Simplify the root: \(6x+4=-\frac{\sqrt[13]{7\times 3^{11}}}{3}\) - step12: Move the constant to the right side: \(6x=-\frac{\sqrt[13]{7\times 3^{11}}}{3}-4\) - step13: Subtract the numbers: \(6x=-\frac{\sqrt[13]{7\times 3^{11}}+12}{3}\) - step14: Multiply by the reciprocal: \(6x\times \frac{1}{6}=-\frac{\sqrt[13]{7\times 3^{11}}+12}{3}\times \frac{1}{6}\) - step15: Multiply: \(x=-\frac{\sqrt[13]{7\times 3^{11}}+12}{18}\) - step16: Check if the solution is in the defined range: \(x=-\frac{\sqrt[13]{7\times 3^{11}}+12}{18},x\neq -\frac{2}{3}\) - step17: Find the intersection: \(x=-\frac{\sqrt[13]{7\times 3^{11}}+12}{18}\) The solution to the equation \(7-\frac{18}{(6x+4)^{-13}}+6=27\) is \(x \approx -0.830142\). Rounding to 3 decimal places, the answer is \(x \approx -0.830\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve for \( x x^{2} \) in the equation \( 7 - \frac{18}{(6x + 4)^{-13}} + 6 = 27 \), we first simplify the equation: 1. Combine like terms on the left: \( 13 - \frac{18}{(6x + 4)^{-13}} = 27 \). 2. Rearrange to isolate the fractional term: \(-\frac{18}{(6x + 4)^{-13}} = 27 - 13\) \(-\frac{18}{(6x + 4)^{-13}} = 14\). 3. Multiply both sides by \(-1\): \(\frac{18}{(6x + 4)^{-13}} = -14\). 4. To eliminate the fraction, multiply both sides by \((6x + 4)^{-13}\): \(18 = -14(6x + 4)^{-13}\). 5. Rearranging gives: \( (6x + 4)^{-13} = -\frac{18}{14} = -\frac{9}{7} \). This result indicates we have an error since the left-hand side cannot be negative. Let’s try solving it step-by-step instead: From our corrected approach, we re-solve to find \( x \): 1. Set up \( 7 + 6 - 27 = \frac{18}{(6x + 4)^{-13}} \). 2. Simplifying gives \( -14 = \frac{18}{(6x + 4)^{-13}} \). 3. Since \(-14\) is negative as mentioned, you typically avoid non-reality. Thus instead of a numerical evaluation, it seems there's a conceptual block needing clarification or re-writing the parameters provided. Therefore, recheck the equation for any omissions or ask for further insights to visualize the setups correctly for \(x\). Exploring alternative equations or interpretations can become handy too!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad