QUESTION 2 \( \begin{array}{l}\text { Given } 4 x=-2 y+4 \text { and } 3 y-2 x=2 \text {, determine the value of } x \text { and } y \text { using Cramer's } \\ \text { rule. } \\ 2.2\left|\begin{array}{ccc}4 & 2 & -6 \\ 3 & 6 & 2 \\ 2 & 1 & 5\end{array}\right| \\ 2.2 .1\end{array} \quad \) Write and evaluate the minor of -6 . Wivite and evaluate the co-factor of -5 .
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the minor of \(-6\) in the matrix given, we need to eliminate the row and column containing \(-6\). After removing the third row and the first column, we're left with the matrix: \[ \begin{array}{cc} 3 & 6 \\ 2 & 1 \\ \end{array} \] Calculating the determinant for this 2x2 matrix gives us: \[ \text{Minor} = (3 \cdot 1) - (6 \cdot 2) = 3 - 12 = -9. \] Now, to find the cofactor of \(-5\), we look at the cell where \(-5\) is located. First, we identify the minor by eliminating its row and column, leading to the same 2x2 matrix as before. Since we need to multiply the computed minor by \((-1)^{i+j}\) (where \(i\) and \(j\) are the row and column indices of \(-5\)), the position will affect the sign. Assuming \(-5\) is at position (2,2): \[ \text{Cofactor} = (-1)^{2+2} \times \text{Minor} = 1 \times (-9) = -9. \]