Pregunta
upstudy study bank question image url

  1. [-/1.07 Points] DETAILS MY NOTES SCALCET9 3.4.062.
    A graphing calculator is recommended.
    The curve is called a bullet-nose curve.
    (a) Find an equation of the tangent line to this curve at the point .
    (a)

Ask by Davies Gross. in the United States
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line to the curve at the point is .

Solución

Step 1. Express the function for
For , the absolute value simplifies as . Thus, the function becomes
Step 2. Differentiate the function using the product rule
Rewrite the function as
Let
Then, by the product rule,
We have
Step 3. Differentiate using the chain rule
Given
let
Then, and by the chain rule:
Differentiate :
Substitute back:
Step 4. Combine the derivatives
Substitute , , and into the product rule:
Simplify:
Factor out :
Thus,
Step 5. Evaluate the derivative at
Substitute into the derivative:
So, the slope of the tangent line at is .
Step 6. Find the equation of the tangent line
The tangent line at with slope is given by the point-slope form:
Substitute the values:
Solve for :
Thus, the equation of the tangent line is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of the tangent line to the curve at the point , we first need to compute the derivative of with respect to . For , the absolute value doesn’t change the function, so we focus on .
Using the quotient rule:
Evaluating at gives us the slope of the tangent line.
Finding at :
So the slope ( ) at is 0. The equation of the tangent line in point-slope form is:
Thus, the equation simplifies to .
The final tangent line is a horizontal line through : .

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad