Pregunta

How do you calculate the probability of rolling a total greater than 7 with two six-sided dice?

Ask by Carrillo Phillips. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of rolling a total greater than 7 with two six-sided dice is 5/12, which is approximately 41.67%.

Solución

To calculate the probability of rolling a total greater than 7 with two six-sided dice, you can follow these steps: ### 1. **Determine the Total Number of Possible Outcomes** When rolling two six-sided dice, each die has 6 faces. Therefore, the total number of possible outcomes is: \[ 6 \text{ (faces on Die 1)} \times 6 \text{ (faces on Die 2)} = 36 \text{ possible outcomes} \] ### 2. **Identify the Favorable Outcomes (Sum Greater Than 7)** Next, list all the possible combinations that result in a sum greater than 7. Here's a breakdown by each possible sum greater than 7: - **Sum of 8:** - (2, 6) - (3, 5) - (4, 4) - (5, 3) - (6, 2) *Total: 5 combinations* - **Sum of 9:** - (3, 6) - (4, 5) - (5, 4) - (6, 3) *Total: 4 combinations* - **Sum of 10:** - (4, 6) - (5, 5) - (6, 4) *Total: 3 combinations* - **Sum of 11:** - (5, 6) - (6, 5) *Total: 2 combinations* - **Sum of 12:** - (6, 6) *Total: 1 combination* **Adding them up:** \[ 5 (\text{for 8}) + 4 (\text{for 9}) + 3 (\text{for 10}) + 2 (\text{for 11}) + 1 (\text{for 12}) = 15 \text{ favorable outcomes} \] ### 3. **Calculate the Probability** Probability is calculated as the number of favorable outcomes divided by the total number of possible outcomes. \[ \text{Probability} = \frac{\text{Favorable Outcomes}}{\text{Total Possible Outcomes}} = \frac{15}{36} \] This fraction can be simplified by dividing both the numerator and the denominator by 3: \[ \frac{15}{36} = \frac{5}{12} \approx 0.4167 \] ### **Conclusion** The probability of rolling a total greater than 7 with two six-sided dice is: \[ \boxed{\dfrac{5}{12} \text{ or approximately } 41.67\%} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the probability of rolling a total greater than 7 with two six-sided dice, first consider the total possible outcomes when rolling the dice, which is 36 (6 sides on the first die multiplied by 6 sides on the second die). Next, determine the successful outcomes that yield a total greater than 7: these are (2,6), (3,5), (4,4), (4,5), (4,6), (5,3) and so forth, making up 21 successful pairs. The probability is therefore the number of successful outcomes divided by the total outcomes: P(total > 7) = 21/36, which simplifies to 7/12 or approximately 0.5833. This type of probability problem isn’t just confined to dice; it's applicable in any scenario involving chance! For practical application, think card games, betting games, or even predicting outcomes in sports. For instance, if you’re playing a game that involves dice, understanding these probabilities can help you make more strategic decisions based on the likelihood of various outcomes. Plus, you can impress your friends with your newfound knowledge of probability!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad