Pregunta
upstudy study bank question image url

Exarcise 5.9
  1. Find the dot product of the following vectorn:
    a. and
    b. and
  2. Find the cosine of the angle formed by the following two vectors
    a u and
    b j and
  3. Let and . Find the cosines of the angles beres
    a. and
  4. and
    c. and
  5. Say whether the vectors are orthogonal. parallel or neither
    a.
    b.

    d.
  6. Find the angle between the rwo vectors and .
Show that .

Ask by Savage Martinez. in Ethiopia
Mar 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

  1. Dot Products:
  2. Cosine of Angles:
  3. Cosines of Angles Between Vectors:
    • and :
    • and :
    • and :
  4. Orthogonality, Parallelism, or Neither:
    • a. Neither
    • b. Orthogonal
    • c. Orthogonal
    • d. Neither
  5. Angle Between Vectors:
  6. Identity Verification:
    • is true.
If you need more details or further assistance, let me know!

Solución

Let’s solve the exercise step by step.

1. Find the dot product of the following vectors:

a. and

The dot product is calculated as follows:

b. and

The dot product is calculated as follows:

2. Find the cosine of the angle formed by the following two vectors:

a. and

The cosine of the angle between two vectors can be found using the formula:

b. and

Similarly, we will use the same formula for cosine.

3. Let . Find the cosines of the angles between:

a. and

b. and

c. and

4. Say whether the vectors are orthogonal, parallel, or neither:

a. and

b. and

c. and

d. and

5. Find the angle between the two vectors and .

6. Show that .

Now, let’s perform the calculations for each part.

Step 1: Calculate the dot products

a. for and

b. for and

Step 2: Calculate the cosines of the angles

a. For and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

b. For and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

Step 3: Calculate the cosines of the angles between

a. and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

b. and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

c. and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

Step 4: Check orthogonality, parallelism, or neither

a. and

  1. Calculate

b. and

  1. Calculate

c. and

  1. Calculate

d. and

  1. Calculate

Step 5: Find the angle between and

  1. Calculate
  2. Calculate and
  3. Use the cosine formula.

Step 6: Show that

Now, let’s perform the calculations for the dot products and cosines.
Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Multiply the numbers:
  • step4: Subtract the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Simplify:
  • step2: Evaluate the power:
  • step3: Evaluate the power:
  • step4: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the numbers:
  • step2: Multiply the numbers:
  • step3: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the numbers:
  • step2: Multiply the numbers:
  • step3: Subtract the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Multiply the numbers:
  • step4: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Multiply the numbers:
  • step2: Multiply the numbers:
  • step3: Subtract the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Multiply the numbers:
  • step4: Subtract the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Evaluate the power:
  • step2: Evaluate the power:
  • step3: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Evaluate the power:
  • step2: Evaluate the power:
  • step3: Add the numbers:

    Calculate or simplify the expression .
    Calculate the value by following steps:
  • step0: Calculate:
  • step1: Remove the parentheses:
  • step2: Multiply the numbers:
  • step3: Multiply the numbers:
  • step4: Subtract the numbers:

    Let’s summarize the results of the calculations step by step.

1. Dot Products

a. and

b. and

2. Cosine of the Angles

a. and

b. and

3. Cosines of the Angles Between Vectors

a. and

b. and

c. and

4. Orthogonality, Parallelism, or Neither

a. and

b. and

c. and

d. and

5. Angle Between Vectors and

6. Show that

This can be shown using the identity for the difference of squares.

Summary of Results

  1. Dot Products:
  2. Cosine of Angles:
  3. Cosines of Angles Between Vectors:
    • and :
    • and :
    • and :
  4. Orthogonality, Parallelism, or Neither:
    • a. Neither
    • b. Orthogonal
    • c. Orthogonal
    • d. Neither
  5. Angle Between Vectors:
  6. Identity Verification:
    • holds true.
If you need further calculations or clarifications, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To understand the geometric nature of vectors, consider that they are like arrows in space with both direction and magnitude. The dot product, for example, gives you a way to determine how aligned two vectors are; a positive value indicates a small angle between them, while a negative value suggests they point in opposite directions. This can help in various applications, such as physics and engineering, to determine work done by forces, or to analyze directional components in navigation.
Exploring further concepts like the angle between vectors can lead to understanding real-world applications, such as optimizing routes in navigation. For instance, when two paths (vectors) diverge, knowing the angle formed can help in calculating the shortest distance or effective path taken. Similarly, determining whether two vectors are orthogonal (perpendicular, giving a dot product of zero) can be crucial in fields like computer graphics or robotics, where accurate positioning is essential!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad