Pregunta
upstudy study bank question image url

Given the following linear inequality: \( -6<2 x-4 \leq 2 \) 1.1.1 Solve the linear inequality. 1.1.2 Represent your solution on a number line.

Ask by Long Tyler. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Solving the Inequality:** \[ -6 < 2x - 4 \leq 2 \] 1. Add 4 to all parts: \[ -2 < 2x \leq 6 \] 2. Divide by 2: \[ -1 < x \leq 3 \] **Solution:** \( x \) is greater than -1 and less than or equal to 3. **Number Line Representation:** - Draw a line with open circle at -1 and closed circle at 3, shading the area in between.

Solución

### 1.1.1. Solving the Linear Inequality Given the inequality: \[ -6 < 2x - 4 \leq 2 \] **Step 1:** **Isolate the term with \( x \).** Add **4** to all parts of the inequality to eliminate the constant term on the left side: \[ -6 + 4 < 2x - 4 + 4 \leq 2 + 4 \] \[ -2 < 2x \leq 6 \] **Step 2:** **Solve for \( x \).** Divide all parts of the inequality by **2** to solve for \( x \): \[ \frac{-2}{2} < \frac{2x}{2} \leq \frac{6}{2} \] \[ -1 < x \leq 3 \] **Solution:** \[ x \in (-1, \, 3] \] This means \( x \) is greater than **-1** and less than or equal to **3**. ### 1.1.2. Representing the Solution on a Number Line To represent the solution \( -1 < x \leq 3 \) on a number line: 1. **Draw a horizontal line** and mark points **-1** and **3** on it. 2. **Open Circle at -1:** - Since \( x \) is **greater than** -1 but not equal to -1, use an **open circle** at **-1**. 3. **Closed Circle at 3:** - Since \( x \) is **less than or equal to** 3, use a **closed circle** at **3**. 4. **Shade the Region Between -1 and 3:** - Shade the line connecting the two points to indicate all values of \( x \) that satisfy the inequality. **Illustration:** ``` <-----|---------|=========|---------|-----> -2 -1 3 4 ( )=================● ``` - **( )** represents an open circle at **-1**. - **●** represents a closed circle at **3**. - **=** represents the shaded area between **-1** and **3**. **Summary:** - \( x \) can be any real number **greater than -1** and **up to 3**. - The number line visually displays all valid solutions within this range.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the linear inequality \( -6 < 2x - 4 \leq 2 \), we need to break it into two parts. First, let's solve \( -6 < 2x - 4 \): 1. Add 4 to both sides: \[ -6 + 4 < 2x \implies -2 < 2x \] 2. Divide by 2: \[ -1 < x \implies x > -1 \] Next, we solve the second part \( 2x - 4 \leq 2 \): 1. Add 4 to both sides: \[ 2x - 4 + 4 \leq 2 + 4 \implies 2x \leq 6 \] 2. Divide by 2: \[ x \leq 3 \] Putting both parts together, we have: \[ -1 < x \leq 3 \] So the solution to the inequality is \( x \in (-1, 3] \). To represent this on a number line: - Draw a number line. - Use an open circle at -1 to indicate that -1 is not included in the solution. - Use a closed circle at 3 to indicate that 3 is included in the solution. - Shade the region between -1 and 3, indicating that all values in that interval satisfy the inequality.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad