Pregunta
upstudy study bank question image url

Question 1-20 Which situation would provide a counterekample to the statement below? Alternate interior angles are nover supplementary. A line that has a slope equal to the slopes of two parallel lines. A line that is parallel to two parallel lines. A transveral that foms \( 45^{\circ} \) angle vith two parallal lines. A transversal that is perpendicular to two parallal lines.

Ask by Elliott Gibson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A transversal that is perpendicular to two parallel lines provides a counterexample to the statement that alternate interior angles are never supplementary.

Solución

To determine which situation would provide a counterexample to the statement "Alternate interior angles are never supplementary," we need to analyze each option in relation to the definition of alternate interior angles and their properties. 1. **A line that has a slope equal to the slopes of two parallel lines.** - This does not provide a counterexample because it simply describes a line that is parallel to two other lines. It does not address the angles formed. 2. **A line that is parallel to two parallel lines.** - Similar to the first option, this does not create any angles that would be supplementary. It just describes a parallel relationship. 3. **A transversal that forms a \( 45^{\circ} \) angle with two parallel lines.** - This situation describes a transversal intersecting two parallel lines, creating alternate interior angles of \( 45^{\circ} \). Since \( 45^{\circ} + 45^{\circ} = 90^{\circ} \), this does not provide a counterexample. 4. **A transversal that is perpendicular to two parallel lines.** - If a transversal is perpendicular to two parallel lines, it forms alternate interior angles of \( 90^{\circ} \). Since \( 90^{\circ} + 90^{\circ} = 180^{\circ} \), this means the alternate interior angles are supplementary. This situation provides a counterexample to the statement. Thus, the correct answer is: **A transversal that is perpendicular to two parallel lines.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that alternate interior angles are formed when a transversal crosses two parallel lines? This delightful geometry world means that alternate interior angles are always congruent (equal), and thus cannot be supplementary (adding up to \(180^{\circ}\)). If you think about two angles that are \(45^{\circ}\) each on two parallel lines, their total is \(90^{\circ}\). How’s that for a twist in the plot? Now, if we take a transversal that forms \(90^{\circ}\) angles with two parallel lines, there we can find an example of supplementary angles! Since \(90^{\circ}\) + \(90^{\circ}\) = \(180^{\circ}\), this fits perfectly to provide a counterexample. So, keep your angles sharp and be on the lookout for those sneaky supplementary pairs!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad