Home Activity \[ \begin{array}{l} \text { (a) } 4+3 \times 2-1 \\ = \\ = \\ = \\ \text { (c) } 30-\frac{1}{4} \text { of } 20+2 \\ = \\ = \\ = \end{array} \] \( (e) 12 \times(20-15) \div 2+3 \) \[ \begin{array}{l} \text { (b) } 36 \div(5+4) \times 3 \\ = \\ = \\ = \\ \text { (a) }(9+5)+(9-5) \\ = \\ = \\ = \end{array} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
Let's dive into some math fun! To solve \( 4 + 3 \times 2 - 1 \), remember the order of operations, which says to tackle multiplication first! So, \( 3 \times 2 = 6 \), and then you simply finish the equation like this: \( 4 + 6 - 1 = 9 \). Now churn through \( 30 - \frac{1}{4} \text{ of } 20 + 2 \). The first step is finding \(\frac{1}{4} \text{ of } 20 = 5 \). Then, \( 30 - 5 + 2 = 27 \). For \( 12 \times (20 - 15) \div 2 + 3 \), handle that parenthesis first to get \( 20 - 15 = 5\), then \( 12 \times 5 \div 2 + 3 \). Next, \( 60 \div 2 + 3 = 30 + 3 = 33 \). Moving on to \( 36 \div (5 + 4) \times 3 \), resolve the parenthesis to find \( 5 + 4 = 9 \). Therefore, you get \( 36 \div 9 \times 3 = 4 \times 3 = 12 \). And finally, let’s unravel \( (9 + 5) + (9 - 5) \). Easy peasy: \( 14 + 4 = 18 \). Math is a blast!