Pregunta
upstudy study bank question image url

  1. ; horizontal shrink by a factor of

Ask by Boone Ford. in the United States
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After a horizontal shrink by a factor of , the function becomes .

Solución

To perform a horizontal shrink by a factor of on the function , follow these steps:

Understanding Horizontal Shrink

A horizontal shrink by a factor of involves compressing the graph of the function towards the y-axis by multiplying the input by . Specifically:
  • Shrink Factor ( ):
  • Transformation Rule: Replace with or equivalently .

Applying the Transformation

Given:
  1. Determine the Transformation:
    • Shrink factor implies .
  2. Replace in the Function:
  3. Simplify the Expression:

Resulting Function

After performing a horizontal shrink by a factor of , the transformed function is:

Graphical Interpretation

  • Original Function :
    • V-shaped graph with a vertex at .
    • Steeper slopes due to the coefficient 2 inside the absolute value.
  • Transformed Function :
    • Vertex remains at .
    • Even steeper slopes due to the increased coefficient 4, indicating a greater horizontal compression.

Visualization

Here’s how the functions compare:
  • Original Function:
  • After Horizontal Shrink:
Graph Comparison
Note: The image above is a placeholder. When plotting, you’ll see that the transformed function is narrower than the original due to the horizontal shrink.

Summary

  • Original Function:
  • After Horizontal Shrink by :
This transformation compresses the graph horizontally by a factor of , making it steeper and narrower.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

When you apply a horizontal shrink to the function , you effectively replace with in the function. This means your new function becomes . This transformation makes the graph of the function narrower, increasing the rate at which it changes as moves away from the origin.
In real-life applications, understanding how such transformations work can be extremely useful, especially in fields like engineering or economics where modeling growth or optimization problems often requires adjusting functions. For instance, if this function represented profit over time, squeezing it horizontally could symbolize a faster rate of profit increase due to improved efficiency!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad