17. \( f(x)=|2 x|+4 \); horizontal shrink by a factor of \( \frac{1}{2} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
When you apply a horizontal shrink to the function \( f(x) = |2x| + 4 \), you effectively replace \( x \) with \( 2x \) in the function. This means your new function becomes \( f(x) = |2(2x)| + 4 = |4x| + 4 \). This transformation makes the graph of the function narrower, increasing the rate at which it changes as \( x \) moves away from the origin. In real-life applications, understanding how such transformations work can be extremely useful, especially in fields like engineering or economics where modeling growth or optimization problems often requires adjusting functions. For instance, if this function represented profit over time, squeezing it horizontally could symbolize a faster rate of profit increase due to improved efficiency!