Pregunta
Multiple Choice Identify the choice that best completes the statement or answers the question. - 1. \( \frac{-5}{x-1}=\frac{3}{x-3} \) a. \( \frac{18}{5} \) b. \( \frac{3}{8} \) c. \( \frac{9}{4} \) d. 0 2. \( \frac{-5}{x-3}=\frac{-3}{x+3} \) a. -12 b. -3 c. \( -\frac{9}{2} \) d. \( -\frac{24}{5} \) 3. \( \frac{a}{a^{2}-36}+\frac{2}{a-6}=\frac{1}{a+6} \) a. \( \quad-9 \) b. -9 and -6 c. 6 d. -6 4. \( \frac{6}{x^{2}-9}-\frac{1}{x-3}=1 \) a. \( \quad-4 \) b. 3 or -4 c. \( \frac{-1 \pm \sqrt{73}}{2} \) d. 2 5. \( \frac{5}{6 d}+\frac{5}{d}=2 \) a. \( \frac{35}{12} \) b. \( \frac{5}{7} \) c. \( \frac{7}{2} \) d. \( \frac{35}{6} \) 6. \( \frac{8}{5 d}+\frac{3}{5 d}=6 \) a. \( \frac{11}{48} \) b. \( \frac{11}{30} \) c. \( \frac{11}{5} \) d. \( \frac{11}{60} \) 7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Write an equation that can be used to find the two integers. Find the two integers. a. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 8 \) and 10 c. \( \quad k+(k+2)=\frac{11}{60} ; 8 \) and 10 b. \( \frac{1}{k}+\frac{1}{k+2}=\frac{11}{60} ; 10 \) and 12 d. \( \quad k+(k+2)=\frac{11}{60} ; 10 \) and 12
Ask by Watson Howell. in the United States
Jan 22,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
1. \( \frac{-5}{x-1} = \frac{3}{x-3} \)
**Answer:** c. \( \frac{9}{4} \)
2. \( \frac{-5}{x-3} = \frac{-3}{x+3} \)
**Answer:** a. \(-12\)
3. \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \)
**Answer:** a. \(-9\)
4. \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \)
**Answer:** a. \(-4\)
5. \( \frac{5}{6d} + \frac{5}{d} = 2 \)
**Answer:** a. \( \frac{35}{12} \)
6. \( \frac{8}{5d} + \frac{3}{5d} = 6 \)
**Answer:** b. \( \frac{11}{30} \)
7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \).
**Answer:** b. \( \frac{1}{k} + \frac{1}{k+2} = \frac{11}{60}; \; 10 \) and \( 12 \)
Solución
Let's solve each of the multiple-choice questions step by step.
---
**1. Solve \( \frac{-5}{x-1} = \frac{3}{x-3} \)**
**Solution:**
\[
-5(x - 3) = 3(x - 1) \\
-5x + 15 = 3x - 3 \\
-8x = -18 \\
x = \frac{18}{8} = \frac{9}{4}
\]
**Answer:**
**c. \( \frac{9}{4} \)**
---
**2. Solve \( \frac{-5}{x-3} = \frac{-3}{x+3} \)**
**Solution:**
\[
-5(x + 3) = -3(x - 3) \\
-5x - 15 = -3x + 9 \\
-2x = 24 \\
x = -12
\]
**Answer:**
**a. \(-12\)**
---
**3. Solve \( \frac{a}{a^{2}-36} + \frac{2}{a-6} = \frac{1}{a+6} \)**
**Solution:**
\[
\frac{a}{(a-6)(a+6)} + \frac{2}{a-6} = \frac{1}{a+6} \\
\text{Multiply by } (a-6)(a+6): \\
a + 2(a + 6) = a - 6 \\
3a + 12 = a - 6 \\
2a = -18 \\
a = -9
\]
(Note: \( a = -6 \) would make the denominator zero, so it's excluded.)
**Answer:**
**a. \(-9\)**
---
**4. Solve \( \frac{6}{x^{2}-9} - \frac{1}{x-3} = 1 \)**
**Solution:**
\[
\frac{6}{(x-3)(x+3)} - \frac{1}{x-3} = 1 \\
\text{Multiply by } (x-3)(x+3): \\
6 - (x + 3) = x^2 - 9 \\
3 - x = x^2 - 9 \\
x^2 + x - 12 = 0 \\
x = \frac{-1 \pm \sqrt{1 + 48}}{2} = \frac{-1 \pm 7}{2} \\
x = 3 \text{ (invalid, causes division by zero)} \text{ or } x = -4
\]
**Answer:**
**a. \(-4\)**
---
**5. Solve \( \frac{5}{6d} + \frac{5}{d} = 2 \)**
**Solution:**
\[
\frac{5}{6d} + \frac{5}{d} = \frac{5 + 30}{6d} = \frac{35}{6d} = 2 \\
35 = 12d \\
d = \frac{35}{12}
\]
**Answer:**
**a. \( \frac{35}{12} \)**
---
**6. Solve \( \frac{8}{5d} + \frac{3}{5d} = 6 \)**
**Solution:**
\[
\frac{11}{5d} = 6 \\
5d = \frac{11}{6} \\
d = \frac{11}{30}
\]
**Answer:**
**b. \( \frac{11}{30} \)**
---
**7. The sum of the reciprocals of two consecutive even integers is \( \frac{11}{60} \). Find the two integers.**
**Solution:**
Let the integers be \( k \) and \( k + 2 \).
\[
\frac{1}{k} + \frac{1}{k+2} = \frac{11}{60}
\]
Testing the options:
- **Option a:** \( k = 8 \) and \( k+2 = 10 \)
\[
\frac{1}{8} + \frac{1}{10} = \frac{5}{40} + \frac{4}{40} = \frac{9}{40} \neq \frac{11}{60}
\]
- **Option b:** \( k = 10 \) and \( k+2 = 12 \)
\[
\frac{1}{10} + \frac{1}{12} = \frac{6}{60} + \frac{5}{60} = \frac{11}{60}
\]
**Answer:**
**b. \( \frac{1}{k} + \frac{1}{k+2} = \frac{11}{60}; \; 10 \) and \( 12 \)**
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To solve the equation \( \frac{-5}{x-1}=\frac{3}{x-3} \), cross-multiply: \(-5(x-3) = 3(x-1)\). Distributing gives \(-5x + 15 = 3x - 3\). Combining like terms leads to \( 8x = 18\), giving \(x = \frac{9}{4}\), so the answer is (c). Next up, for \( \frac{5}{6 d}+\frac{5}{d}=2 \), first, find a common denominator \(6d\): \(\frac{5}{6d} + \frac{30}{6d} = 2\), leading to \(\frac{35}{6d} = 2\). Cross multiply to find \(35 = 12d\), hence \(d = \frac{35}{12}\), making option (a) the correct choice!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium