Pregunta
Calculate the distance between the points \( (3, 4) \) and \( (7, 1) \).
Ask by Tran Mann. in India
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The distance between the points \( (3, 4) \) and \( (7, 1) \) is 5 units.
Solución
To calculate the distance between two points in a Cartesian plane, you can use the **Distance Formula**, which is derived from the Pythagorean theorem.
Given two points \( P_1(x_1, y_1) \) and \( P_2(x_2, y_2) \), the distance \( d \) between them is:
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Let's apply this formula to your specific points \( (3, 4) \) and \( (7, 1) \).
1. **Identify the coordinates:**
- \( P_1 = (3, 4) \) where \( x_1 = 3 \) and \( y_1 = 4 \)
- \( P_2 = (7, 1) \) where \( x_2 = 7 \) and \( y_2 = 1 \)
2. **Subtract the corresponding coordinates:**
- \( x_2 - x_1 = 7 - 3 = 4 \)
- \( y_2 - y_1 = 1 - 4 = -3 \)
3. **Square these differences:**
- \( (x_2 - x_1)^2 = 4^2 = 16 \)
- \( (y_2 - y_1)^2 = (-3)^2 = 9 \)
4. **Add the squared differences:**
- \( 16 + 9 = 25 \)
5. **Take the square root of the sum to find the distance:**
- \( d = \sqrt{25} = 5 \)
**Therefore, the distance between the points \( (3, 4) \) and \( (7, 1) \) is 5 units.**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To find the distance between the points \( (3, 4) \) and \( (7, 1) \), you can use the distance formula: \[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] Plugging in the values: - \( x_1 = 3 \), \( y_1 = 4 \) - \( x_2 = 7 \), \( y_2 = 1 \) The distance calculation would look like this: \[ d = \sqrt{(7 - 3)^2 + (1 - 4)^2} \] \[ d = \sqrt{(4)^2 + (-3)^2} \] \[ d = \sqrt{16 + 9} \] \[ d = \sqrt{25} \] \[ d = 5 \] So, the distance between the points \( (3, 4) \) and \( (7, 1) \) is \( 5 \) units.
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium