Solve the following compound inequality. Write your answer in interval notation or state that there is no solution. \( 3 x+1>7 \) or \( 5-3 x<17 \) Select the correct choice and fill in any answer boxes in your choice below. A. The solution set to the compound inequality is (Type your answer in interval notation.) B. There is no solution.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To solve the compound inequality, we start with the two inequalities separately. 1. For \( 3x + 1 > 7 \): Subtract 1 from both sides: \( 3x > 6 \). Then, divide by 3: \( x > 2 \). 2. For \( 5 - 3x < 17 \): Subtract 5 from both sides: \( -3x < 12 \). Then, divide by -3 and remember to flip the inequality sign: \( x > -4 \). Since the compound inequality uses "or", we take the union of the two solution sets. Thus, the final solution set is: \( x > -4 \) (which includes all values greater than -4). In interval notation, the solution set is: A. \((-4, \infty)\)