Find the roots and the vertex of the quadratic on a calculator. Round all values to 3 decimal places (if necessary). \[ y=x^{2}+10 x-11 \] Answer Altemp, cour ers Roots: \( \square \) and \( \square \) Anets (tu)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the roots of the quadratic equation \( y=x^2+10x-11 \), you can use the quadratic formula: \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 1 \), \( b = 10 \), and \( c = -11 \). Plugging in these values gives the roots as approximately \( x \approx -11.414 \) and \( x \approx 1.414 \). The vertex of a quadratic in the form \( y = ax^2 + bx + c \) can be found using the formula \( x = -\frac{b}{2a} \). For this equation, the vertex \( x \) coordinate is approximately \( -5 \). To find the \( y \) coordinate, substitute \( x = -5 \) into the equation, giving you \( y = -36 \). Hence, the vertex is at \( (-5, -36) \). Roots: \( -11.414 \) and \( 1.414 \) Vertex: \( (-5, -36) \)