Pregunta
upstudy study bank question image url

Question 1 of 10 possible This question: 10 point(s) possible Submit quiz Find the zeros for the polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis or touches the x-axis and turns around at each zero. \[ f(x)=2(x-7)(x+4)^{3} \] answer box(es) within your choice. A. There are two zeros. The multiplicity of the largest zero is 7 . The multiplicity of the smallest zero is \( \square \) 1. (Simplify your answers.) B. There are three zeros. The multiplicity of the largest zero is \( \square \) The multiplicity of the smallest zero is \( \square \) . The multiplicity of the other zero is \( \square \) (Simplify your answers.) C. There is one zero. The multiplicity of the zero is \( \square \) . (Simplify your answer.) Determine the behavior of the function at each zero. Select the correct choice below and, if necessary, fill in the answer boxes within your choice. A. The graph crosses the \( x \)-axis at all zeros. B. The graph crosses the \( x \)-axis at \( x= \) \( \square \) and touches the x -axis and turns around at \( \mathrm{x}= \) \( \square \) . (Simplify your answers. Type integers or decimals. Use a comma to separate answers as needed.) C. The graph touches the \( x \)-axis and turns around at all zeros. Time Remaining: 01:32:39 Next

Ask by Li Medina. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are two zeros: \( x = 7 \) with multiplicity 1 and \( x = -4 \) with multiplicity 3. The graph crosses the x-axis at both zeros.

Solución

Let's analyze the polynomial function \( f(x) = 2(x - 7)(x + 4)^3 \) to find its zeros, their multiplicities, and the behavior of the graph at each zero. ### **1. Finding the Zeros and Their Multiplicities** To find the zeros of \( f(x) \), set the function equal to zero: \[ 2(x - 7)(x + 4)^3 = 0 \] This equation is satisfied when either factor is zero: 1. **\( x - 7 = 0 \)** - **Zero:** \( x = 7 \) - **Multiplicity:** 1 (since the factor \( (x - 7) \) is raised to the power of 1) 2. **\( (x + 4)^3 = 0 \)** - **Zero:** \( x = -4 \) - **Multiplicity:** 3 (since the factor \( (x + 4) \) is raised to the power of 3) **Summary of Zeros:** - **\( x = 7 \)** with **multiplicity 1** - **\( x = -4 \)** with **multiplicity 3** ### **2. Behavior of the Graph at Each Zero** The behavior of the graph at each zero depends on the multiplicity: - **Odd Multiplicity:** The graph **crosses** the x-axis at the zero. - **Even Multiplicity:** The graph **touches** the x-axis and **turns around** at the zero. Applying this to our zeros: 1. **\( x = 7 \)** with **multiplicity 1** (odd) - **Behavior:** The graph **crosses** the x-axis at \( x = 7 \). 2. **\( x = -4 \)** with **multiplicity 3** (odd) - **Behavior:** The graph **crosses** the x-axis at \( x = -4 \). ### **Final Answer** **Zeros and Their Multiplicities:** - **\( x = 7 \)** with multiplicity **1** - **\( x = -4 \)** with multiplicity **3** **Graph Behavior:** - The graph **crosses** the x-axis at both \( x = 7 \) and \( x = -4 \). --- **Matching the Provided Options:** Based on the analysis: - **For the Zeros and Multiplicities:** - **Option A** is the closest match if we correct the typo regarding the multiplicity of the largest zero. - **Corrected Option A:** - There are two zeros. - The multiplicity of the largest zero (\( x = 7 \)) is **1**. - The multiplicity of the smallest zero (\( x = -4 \)) is **3**. - **For the Graph Behavior:** - **Option A** correctly states that the graph crosses the x-axis at all zeros. **Final Selection:** **A.** - **There are two zeros.** - **Multiplicity of the largest zero (\( x = 7 \)) is** **1**. - **Multiplicity of the smallest zero (\( x = -4 \)) is** **3**. **Behavior:** - **The graph crosses the \( x \)-axis at all zeros.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The polynomial function \( f(x) = 2(x-7)(x+4)^{3} \) has two distinct zeros: \( x = 7 \) and \( x = -4 \). The zero at \( x = 7 \) has a multiplicity of 1, while the zero at \( x = -4 \) has a multiplicity of 3. This means that the graph will cross the x-axis at \( x = 7 \) and touch the x-axis at \( x = -4 \), turning around because of the odd multiplicity. To visualize this better, think of the behavior of a ball. When it bounces (like at \( x = -4 \)), it merely touches the ground and turns back. However, when it rolls over a spot (like at \( x = 7 \)), it goes right through without hesitation! This bouncing and rolling not only makes for good physical comedy but also helps us understand polynomial behaviors brilliantly!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad