Pregunta
upstudy study bank question image url

Find a polynomial function of least degree having only real coefficients, a leading coefficient of 1 , and zeros of \( 4,1-2 i \), and \( 4+2 i \).

Ask by Fleming Luna. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

One such polynomial is \(x^5 - 14x^4 + 81x^3 - 244x^2 + 420x - 400\).

Solución

To construct a polynomial of the least degree with the given specifications, we need to consider the following: 1. **Given Zeros:** - Real zero: \(4\) - Complex zeros: \(1 - 2i\) and \(4 + 2i\) 2. **Complex Conjugate Zeros:** - For a polynomial with real coefficients, complex zeros must come in conjugate pairs. Therefore, the conjugates of the given complex zeros must also be included: - Conjugate of \(1 - 2i\): \(1 + 2i\) - Conjugate of \(4 + 2i\): \(4 - 2i\) 3. **Total Zeros:** - Real zero: \(4\) - Complex zeros: \(1 - 2i, 1 + 2i, 4 + 2i, 4 - 2i\) 4. **Constructing the Polynomial:** - Each zero \(\alpha\) corresponds to a factor \((x - \alpha)\) in the polynomial. - Therefore, the polynomial is: \[ P(x) = (x - 4)(x - (1 - 2i))(x - (1 + 2i))(x - (4 + 2i))(x - (4 - 2i)) \] 5. **Simplifying the Polynomial:** - First, simplify the pairs of complex conjugate factors: \[ (x - (1 - 2i))(x - (1 + 2i)) = (x - 1)^2 + (2)^2 = x^2 - 2x + 5 \] \[ (x - (4 + 2i))(x - (4 - 2i)) = (x - 4)^2 + (2)^2 = x^2 - 8x + 20 \] - Now, multiply all the factors together: \[ P(x) = (x - 4)(x^2 - 2x + 5)(x^2 - 8x + 20) \] - Expanding further: \[ P(x) = (x - 4)(x^4 - 10x^3 + 41x^2 - 80x + 100) \] \[ P(x) = x^5 - 14x^4 + 81x^3 - 244x^2 + 420x - 400 \] 6. **Final Polynomial:** \[ P(x) = x^5 - 14x^4 + 81x^3 - 244x^2 + 420x - 400 \] This is the polynomial of least degree with real coefficients, a leading coefficient of \(1\), and the given zeros. **Answer:** After expanding, one such polynomial is \(x^5 - 14\,x^4 + 81\,x^3 - 244\,x^2 + 420\,x - 400\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find a polynomial function of least degree with given zeros, remember that polynomial functions with real coefficients must have complex roots in conjugate pairs. Since \( 1-2i \) is a zero, its conjugate \( 1+2i \) must also be a zero. The zeros we will use are \( 4, 1-2i, 1+2i \). The polynomial can be constructed by taking the product of the factors corresponding to each zero: 1. The factor for the zero \( 4 \) is \( (x - 4) \). 2. The factors for the zeros \( 1-2i \) and \( 1+2i \) are \( (x - (1-2i)) \) and \( (x - (1+2i)) \), respectively. This can be simplified to: \[ (x - (1-2i))(x - (1+2i)) = ((x - 1) + 2i)((x - 1) - 2i) = (x - 1)^2 + 4 \] (This is a difference of squares.) Now, putting it all together, we have: \[ P(x) = (x - 4)((x - 1)^2 + 4) \] Next, we expand this: 1. First, expand \( (x - 1)^2 + 4 \): \[ (x - 1)^2 = x^2 - 2x + 1 \implies (x - 1)^2 + 4 = x^2 - 2x + 1 + 4 = x^2 - 2x + 5 \] 2. Now multiply with \( (x - 4) \): \[ P(x) = (x - 4)(x^2 - 2x + 5) = x(x^2 - 2x + 5) - 4(x^2 - 2x + 5) \] \[ = x^3 - 2x^2 + 5x - 4x^2 + 8x - 20 \] \[ = x^3 - 6x^2 + 13x - 20 \] Thus, the polynomial function of least degree with real coefficients, a leading coefficient of 1, and the specified zeros is: \[ \boxed{x^3 - 6x^2 + 13x - 20} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad