Pregunta
upstudy study bank question image url

A torus is formed when a circle of radius 5 centered at \( (6,0) \) is revolved about the \( y \)-axis. a. Use the shell method to write an integral for the volume of the torus. b. Use the washer method to write an integral for the volume of the torus. c. Find the volume of the torus by evaluating one of the two integrals obtained in parts (a) and (b). (Hint: Both integrals can be evaluated without using the Fundamental Theorem of Calculus.)

Ask by Ford Turner. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**c.** The volume of the torus is \(300\pi^2\) cubic units.

Solución

### Problem 3c: Find the Volume of the Torus To find the volume of the torus formed by revolving the circle of radius 5 centered at \((6, 0)\) about the \(y\)-axis, we can use the **shell method** integral derived in part (a): \[ V = 4\pi \int_{1}^{11} x \sqrt{25 - (x - 6)^2} \, dx \] However, evaluating this integral directly can be complex. Instead, we'll use a geometric approach based on the known formula for the volume of a torus. ### Geometric Approach A torus generated by revolving a circle with radius \(r\) around an axis at a distance \(R\) from the center of the circle has a volume given by: \[ V = 2\pi^2 R r^2 \] In our case: - The radius of the circle being revolved (\(r\)) is 5. - The distance from the center of the circle to the \(y\)-axis (\(R\)) is 6. Plugging these values into the formula: \[ V = 2\pi^2 \times 6 \times 5^2 = 2\pi^2 \times 6 \times 25 = 300\pi^2 \] ### Final Answer **c.** The volume of the torus is \(300\pi^2\) cubic units. Answer: Problem c Answer Using the shell method, the volume is 4 π times the integral from 1 to 11 of x √(25 – (x – 6)²) dx. Thus, V = 4π ∫₁¹¹ x √[25 − (x−6)^2] dx which evaluates to 300 π².

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

First additional information: The torus is a fascinating geometric shape often found in art and architecture, being created from the revolution of a circle. The historical significance of the torus can be linked to ancient cultures as they first explored three-dimensional shapes and their properties. The word "torus" comes from the Latin for "twisted" or "rounded," and you can find tori (plural of torus) in many forms, from pottery designs to modern doughnut shapes! Second additional information: Tori have real-world applications in various fields. In mathematics and computer graphics, the torus is used to model objects like donuts, rings, and even some types of planetary surfaces! In physics, tori can describe magnetic confinement in fusion devices, where plasma is kept in a donut shape to maintain stability. So whether you’re designing a video game or studying astrophysics, understanding the properties of a torus can come in handy!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad