Pregunta
1. กำหนดให้เวกเตอร์ \( \vec{A}=3 \hat{i}+5 \hat{j} \) และ \( \vec{B}=6 \hat{i}+11 \hat{j} \) จงหาเวกเตอร์ \( 3 \vec{A}-\vec{B} \)
Ask by Campos Hill. in Thailand
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
เวกเตอร์ \( 3\vec{A} - \vec{B} \) คือ \( 3\hat{i} + 4\hat{j} \).
Solución
ในการคำนวณเวกเตอร์ \( 3\vec{A} - \vec{B} \) โดยที่ \( \vec{A} = 3\hat{i} + 5\hat{j} \) และ \( \vec{B} = 6\hat{i} + 11\hat{j} \) ให้ทำตามขั้นตอนดังนี้:
1. **คูณเวกเตอร์ \( \vec{A} \) ด้วยจำนวน 3:**
\[
3\vec{A} = 3(3\hat{i} + 5\hat{j}) = 9\hat{i} + 15\hat{j}
\]
2. **ลบเวกเตอร์ \( \vec{B} \) จากผลลัพธ์ที่ได้:**
\[
3\vec{A} - \vec{B} = (9\hat{i} + 15\hat{j}) - (6\hat{i} + 11\hat{j}) = (9 - 6)\hat{i} + (15 - 11)\hat{j}
\]
3. **คำนวณผลลัพธ์สุดท้าย:**
\[
3\vec{A} - \vec{B} = 3\hat{i} + 4\hat{j}
\]
ดังนั้น เวกเตอร์ \( 3\vec{A} - \vec{B} \) คือ \( 3\hat{i} + 4\hat{j} \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
ขั้นตอนแรกคือการคูณเวกเตอร์ \( \vec{A} \) ด้วย 3: \[ 3 \vec{A} = 3(3 \hat{i}+5 \hat{j}) = 9 \hat{i}+15 \hat{j} \] จากนั้นเราจะลดเวกเตอร์ \( \vec{B} \) ออกจาก \( 3 \vec{A} \): \[ 3 \vec{A} - \vec{B} = (9 \hat{i} + 15 \hat{j}) - (6 \hat{i} + 11 \hat{j}) \] การทำการลบเวกเตอร์จะทำให้ได้ผลลัพธ์ดังนี้: \[ = (9 \hat{i} - 6 \hat{i}) + (15 \hat{j} - 11 \hat{j}) = 3 \hat{i} + 4 \hat{j} \] ดังนั้น \( 3 \vec{A} - \vec{B} = 3 \hat{i} + 4 \hat{j} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium