Pregunta
upstudy study bank question image url

At a certain school, there are 86 girls in Grade 9 Their sport preferences are indicated below: - 26 girls play rugby. - 37 girls play basketball. - 14 girls play both rugby and basketball. - 37 girls do not play rugby or basketball. 1. The following Venn diagram represents the information above, but is incomplete. Give the values of \( n_{1}, n_{2}, n_{3} \), and \( n_{4} \).

Ask by Stewart Pierce. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( n_{1} = 12 \), \( n_{2} = 23 \), \( n_{3} = 14 \), \( n_{4} = 37 \).

Solución

To determine the values of \( n_{1}, n_{2}, n_{3} \), and \( n_{4} \) in the Venn diagram, let's break down the given information: 1. **Total number of girls:** 86 2. **Girls who do not play rugby or basketball:** 37 3. **Girls who play at least one of rugby or basketball:** \( 86 - 37 = 49 \) 4. **Girls who play rugby:** 26 5. **Girls who play basketball:** 37 6. **Girls who play both rugby and basketball:** 14 Now, let's find each part of the Venn diagram: - **\( n_{3} \) (Girls who play both rugby and basketball):** This is directly given as 14. - **\( n_{1} \) (Girls who play only rugby):** \[ n_{1} = \text{Total rugby players} - \text{Girls who play both sports} = 26 - 14 = 12 \] - **\( n_{2} \) (Girls who play only basketball):** \[ n_{2} = \text{Total basketball players} - \text{Girls who play both sports} = 37 - 14 = 23 \] - **\( n_{4} \) (Girls who do not play either sport):** This is directly given as 37. **Summary of Values:** - \( n_{1} = 12 \) - \( n_{2} = 23 \) - \( n_{3} = 14 \) - \( n_{4} = 37 \) **Venn Diagram Representation:** ``` Rugby (26) / \ 12 14 / \ Basketball (37) – 23 ``` And outside the circles: - Neither sport: 37

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the values of \( n_1, n_2, n_3, \) and \( n_4 \) in the Venn diagram: 1. **First, calculate the number of girls who play only rugby:** Total playing rugby = 26 Playing both rugby and basketball = 14 So, girls playing only rugby, \( n_1 = 26 - 14 = 12 \). 2. **Next, calculate the number of girls who play only basketball:** Total playing basketball = 37 Playing both rugby and basketball = 14 So, girls playing only basketball, \( n_2 = 37 - 14 = 23 \). 3. **For the girls who play both sports:** From the problem, we know that \( n_3 = 14 \). 4. **Finally, calculate the number of girls who play neither sport:** Total girls = 86 Girls playing rugby or basketball = Girls playing only rugby + Girls playing only basketball + Girls playing both + Girls playing neither We have 12 (rugby) + 23 (basketball) + 14 (both) + \( n_4 \) (neither) = 49 (total playing rugby or basketball). Thus, the girls playing neither, \( n_4 = 86 - 49 = 37 \). The values are: - \( n_1 = 12 \) (only rugby) - \( n_2 = 23 \) (only basketball) - \( n_3 = 14 \) (both sports) - \( n_4 = 37 \) (neither sport)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad