2 Determine the sum of the first 40 terms of the arithmetic series \( 2.1 \quad 2+10+18+\ldots \) \( 2.2 16+10+4-2-\ldots \) \( 2.3 1+2.5+4+\ldots \) \( n=40 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To find the sum of the first 40 terms of each arithmetic series, we can use the formula for the sum of the first \( n \) terms of an arithmetic series: \[ S_n = \frac{n}{2} \times (a + l) \] where \( S_n \) is the sum, \( n \) is the number of terms, \( a \) is the first term, and \( l \) is the last term (which can be found using \( l = a + (n-1) \cdot d \), where \( d \) is the common difference). ### 2.1 \( 2 + 10 + 18 + \ldots \) - First term \( a = 2 \) - Common difference \( d = 10 - 2 = 8 \) - 40th term \( l = 2 + (40 - 1) \cdot 8 = 2 + 312 = 314 \) Now plug into the formula: \[ S_{40} = \frac{40}{2} \times (2 + 314) = 20 \times 316 = 6320 \] ### 2.2 \( 16 + 10 + 4 - 2 - \ldots \) - First term \( a = 16 \) - Common difference \( d = 10 - 16 = -6 \) - 40th term \( l = 16 + (40 - 1) \cdot (-6) = 16 - 234 = -218 \) Now plug into the formula: \[ S_{40} = \frac{40}{2} \times (16 + (-218)) = 20 \times (-202) = -4040 \] ### 2.3 \( 1 + 2.5 + 4 + \ldots \) - First term \( a = 1 \) - Common difference \( d = 2.5 - 1 = 1.5 \) - 40th term \( l = 1 + (40 - 1) \cdot 1.5 = 1 + 58.5 = 59.5 \) Now plug into the formula: \[ S_{40} = \frac{40}{2} \times (1 + 59.5) = 20 \times 60.5 = 1210 \] In conclusion, the sums of the first 40 terms are: - \( 2.1: 6320 \) - \( 2.2: -4040 \) - \( 2.3: 1210 \)