Pregunta
upstudy study bank question image url

Igmore the effects of air resistance. 1. A body is projected vertically upward from the roof of a building at \( 40 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). It reaches the ground with a speed of \( 60 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). Calculate: a) the height of the building. b) the total time of flight.

Ask by Haynes Parry. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the building is 100 meters, and the total time of flight is 10 seconds.

Solución

Sure, let's solve the problem step by step by ignoring air resistance. We'll use the standard equations of motion under constant acceleration due to gravity. ### Given: - **Initial velocity upwards (\( u \))**: \( 40 \, \text{m/s} \) - **Final velocity when reaching the ground (\( v \))**: \( 60 \, \text{m/s} \) downward - **Acceleration due to gravity (\( g \))**: \( 10 \, \text{m/s}^2 \) (approximated for simplicity) **Note:** We'll take upward as the positive direction. Therefore, the final velocity \( v \) will be negative since it's downward. ### Part (a): Height of the Building We can use the **kinematic equation** that relates velocity and displacement: \[ v^2 = u^2 + 2a s \] Where: - \( v = -60 \, \text{m/s} \) (negative because it's downward) - \( u = 40 \, \text{m/s} \) - \( a = -g = -10 \, \text{m/s}^2 \) (acceleration is downward) - \( s = -h \) (displacement is downward, hence negative) Plugging in the values: \[ (-60)^2 = (40)^2 + 2(-10)(-h) \] \[ 3600 = 1600 + 20h \] \[ 3600 - 1600 = 20h \] \[ 2000 = 20h \] \[ h = \frac{2000}{20} = 100 \, \text{meters} \] **Height of the building (\( h \)) is 100 meters.** ### Part (b): Total Time of Flight The total time of flight can be divided into two phases: 1. **Going Up:** Time to reach the maximum height. 2. **Coming Down:** Time to descend from the maximum height to the ground. **1. Time to Reach Maximum Height (\( t_1 \)):** At maximum height, the final velocity is 0. \[ v = u + at \] \[ 0 = 40 - 10t_1 \] \[ t_1 = \frac{40}{10} = 4 \, \text{seconds} \] **2. Time to Descend from Maximum Height to Ground (\( t_2 \)):** The total displacement from the maximum height to the ground is \( h + h_1 \), where \( h_1 \) is the additional height gained. First, calculate \( h_1 \): \[ h_1 = ut_1 + \frac{1}{2} a t_1^2 = 40 \times 4 + \frac{1}{2} \times (-10) \times 4^2 = 160 - 80 = 80 \, \text{meters} \] Total height from the ground: \[ H = h + h_1 = 100 + 80 = 180 \, \text{meters} \] Now, calculate \( t_2 \) using the equation: \[ s = \frac{1}{2} g t_2^2 \] \[ 180 = \frac{1}{2} \times 10 \times t_2^2 \] \[ 180 = 5 t_2^2 \] \[ t_2^2 = \frac{180}{5} = 36 \] \[ t_2 = \sqrt{36} = 6 \, \text{seconds} \] **Total Time of Flight (\( T \))**: \[ T = t_1 + t_2 = 4 + 6 = 10 \, \text{seconds} \] ### **Summary of Answers:** - **a) Height of the building:** \( 100 \, \text{meters} \) - **b) Total time of flight:** \( 10 \, \text{seconds} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, we can use the kinematic equations for vertical motion. ### a) Height of the Building First, we'll find the height of the building using the final velocity, initial velocity, and the acceleration due to gravity. 1. Initial Velocity (\( u \)) = \( 40 \, \text{m/s} \) (upward) 2. Final Velocity (\( v \)) = \( 60 \, \text{m/s} \) (downward, which we'll take as negative in our calculation, so \( -60 \, \text{m/s} \)) 3. Acceleration (\( a \)) = \( -9.81 \, \text{m/s}^2 \) (downward) Using the equation \( v^2 = u^2 + 2as \) where \( s \) is the height of the building: \[ (-60)^2 = (40)^2 + 2(-9.81)s \] \[ 3600 = 1600 - 19.62s \] \[ 19.62s = 1600 - 3600 \] \[ 19.62s = -2000 \] \[ s = \frac{-2000}{19.62} \approx -102.0\, \text{m} \] Since height can't be negative, we can ignore the negative and realize it signifies direction. Thus, the height of the building is approximately **102.0 meters**. ### b) Total Time of Flight We can find the total time of flight by determining the time to reach the maximum height and then the time to fall back to the ground. 1. Time to reach maximum height where final velocity (\( v \)) becomes \( 0 \): Using \( v = u + at \) implies: \[ 0 = 40 - 9.81t \] \[ 9.81t = 40 \implies t = \frac{40}{9.81} \approx 4.08 \, \text{s} \] 2. Time to fall from maximum height to the ground can be calculated using \( v^2 = u^2 + 2as \) again. The total height to fall is \( 102.0\, \text{m} \) with \( u = 0 \) at maximum height: \[ 60^2 = 0 + 2(9.81)s \] \[ 3600 = 19.62s \implies s = \frac{3600}{19.62} \approx 183.1\, \text{m} \text{(Note: This includes the upward portion and downward) } \] Final Calculation of time for falling: Using \( s = ut + \frac{1}{2} at^2 \): \[ 102.0 = 0 + \frac{1}{2}(-9.81)t^2 \implies 102.0 = -4.905t^2 \] Rearranging gives: \[ t^2 \approx \frac{102.0}{4.905} \approx 20.77 \implies t \approx 4.56 \, \text{s} \] So combining both parts: Total time of flight \( \approx 4.08 + 4.56 \approx 8.64 \, \text{s} \) Thus, the total time of flight is approximately **8.64 seconds**.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad