11 12 13 - 15 (5) 17 1 \( \theta \) (1) TIME REMAINING 01:09:04 Which expression represents a rational number? \( \frac{5}{9}+\sqrt{18} \) \( \pi+\sqrt{16} \) \( \frac{2}{7}+\sqrt{121} \) \( \frac{3}{10}+\sqrt{11} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To determine which expression contains a rational number, we need to evaluate each option. 1. \( \frac{5}{9}+\sqrt{18} \): Here, \( \sqrt{18} = 3\sqrt{2} \) is irrational. So, this expression is irrational. 2. \( \pi+\sqrt{16} \): \( \sqrt{16} = 4 \), which is rational, but \( \pi \) is irrational. Hence, this expression is irrational. 3. \( \frac{2}{7}+\sqrt{121} \): This simplifies to \( \frac{2}{7}+11 \), where both terms are rational. Thus, this expression is rational. 4. \( \frac{3}{10}+\sqrt{11} \): \( \sqrt{11} \) is irrational, making the entire expression irrational. The expression that represents a rational number is \( \frac{2}{7}+\sqrt{121} \).