Pregunta
upstudy study bank question image url

3. Rudi, Sam and Teh had 162 stickers altogether. Rudi gave \( \frac{3}{10} \) of his stickers to Sam and \( \frac{1}{4} \) of his stickers to Ted. After that, all three boys had the same number of stickers Who had more stickers at first, Sam or Ted, and how many more?

Ask by Hodgson Donnelly. in Singapore
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Ted initially had six more stickers than Sam.

Solución

Let's solve the problem step by step. ### **Step 1: Define the Variables** Let: - \( R \) = Number of stickers Rudi initially had - \( S \) = Number of stickers Sam initially had - \( T \) = Number of stickers Ted initially had Given: \[ R + S + T = 162 \] ### **Step 2: Express Transfers** Rudi gives: - \( \frac{3}{10}R \) stickers to Sam - \( \frac{1}{4}R \) stickers to Ted After the transfers: - Rudi has: \[ R - \left( \frac{3}{10}R + \frac{1}{4}R \right) = R - \frac{11}{20}R = \frac{9}{20}R \] - Sam has: \[ S + \frac{3}{10}R \] - Ted has: \[ T + \frac{1}{4}R \] ### **Step 3: Set Final Sticker Counts Equal** After the transfers, all three have the same number of stickers: \[ \frac{9}{20}R = S + \frac{3}{10}R = T + \frac{1}{4}R \] Solving for \( S \) and \( T \) in terms of \( R \): - For Sam: \[ S + \frac{3}{10}R = \frac{9}{20}R \] \[ S = \frac{9}{20}R - \frac{3}{10}R = \frac{3}{20}R \] - For Ted: \[ T + \frac{1}{4}R = \frac{9}{20}R \] \[ T = \frac{9}{20}R - \frac{1}{4}R = \frac{1}{5}R \] ### **Step 4: Substitute Back into the Total** Now substitute \( S \) and \( T \) back into the total: \[ R + \frac{3}{20}R + \frac{1}{5}R = 162 \] \[ R + \frac{3}{20}R + \frac{4}{20}R = 162 \] \[ \frac{27}{20}R = 162 \] \[ R = 162 \times \frac{20}{27} = 120 \] Thus: - \( R = 120 \) - \( S = \frac{3}{20} \times 120 = 18 \) - \( T = \frac{1}{5} \times 120 = 24 \) ### **Step 5: Compare Sam and Ted** - **Sam initially had 18 stickers.** - **Ted initially had 24 stickers.** **Conclusion:** **Ted had more stickers at first, having 6 more stickers than Sam.** ### **Final Answer** Ted initially had six more stickers than Sam.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's break this problem down in a fun way! Imagine Rudi, Sam, and Teh as sticker collectors at a fun fair, each starting with a certain number of stickers. After Rudi shared his stickers, they all ended up with equal amounts. This means Rudi gave away stickers and left himself with just the right number so that all could match up! To find out who started with more stickers, you can set up equations based on the number of stickers each had after the exchange. After some calculations, you’ll realize that Rudi had more stickers initially than Sam and Teh. The difference between Sam and Teh's starting totals will reveal who had the greater collection and by how much. Go on, give it a try!

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad