9. \( \frac{9 a^{7} b\left(3 a^{6} b^{2}\right)}{18\left(a^{5} b^{3}\right)} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \frac{9 a^{7} b\left(3 a^{6} b^{2}\right)}{18\left(a^{5} b^{3}\right)} \), we start by multiplying the terms in the numerator: 1. Numerator: \( 9 a^{7} b (3 a^{6} b^{2}) = 27 a^{7 + 6} b^{1 + 2} = 27 a^{13} b^{3} \) 2. Now we have: \( \frac{27 a^{13} b^{3}}{18 a^{5} b^{3}} \) Next, we simplify the fraction: 1. Divide the coefficients: \( \frac{27}{18} = \frac{3}{2} \) 2. For the variables, apply the laws of exponents: - \( \frac{a^{13}}{a^{5}} = a^{13 - 5} = a^{8} \) - \( \frac{b^{3}}{b^{3}} = b^{3 - 3} = b^{0} = 1 \) Thus, the simplified expression is: \[ \frac{3}{2} a^{8} \]