Pregunta
upstudy study bank question image url

Hallar la derivade \( y=\sqrt{r^{2}-x^{2}} \)

Ask by Powell Ward. in Colombia
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

La derivada de \( y = \sqrt{r^{2} - x^{2}} \) con respecto a \( x \) es \( \frac{ -x }{ \sqrt{ r^{2} - x^{2} } } \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

The Deep Dive

Para hallar la derivada de la función \( y = \sqrt{r^{2} - x^{2}} \), puedes usar la regla de la cadena. Primero, reescribe la función en forma de potencia: \( y = (r^{2} - x^{2})^{1/2} \). Al aplicar la derivada, obtenemos: \[ \frac{dy}{dx} = \frac{1}{2}(r^{2} - x^{2})^{-1/2} \cdot (-2x) = -\frac{x}{\sqrt{r^{2} - x^{2}}} \] Así que la derivada es \( \frac{dy}{dx} = -\frac{x}{\sqrt{r^{2} - x^{2}}} \). Ahora, recuerda que si \( x \) se aproxima a \( r \), la derivada puede volverse indefinida, ya que el denominador se aproxima a cero. Así que siempre es importante analizar el dominio de la función para evitar pérdidas de información.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad