Pregunta
upstudy study bank question image url

Use the given graph to determine the value of the indicated limits. (a) \( \lim _{x \rightarrow-5} f(x) \) (b) \( \lim _{x \rightarrow-4} f(x) \) (a) Select the correct choice below, and if necessary, fill in the answer box to complete your choice. A. lim \( f(x)=\square \) (o) B. The limit does

Ask by Reed Bond. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To determine the limits: (a) \( \lim_{x \rightarrow -5} f(x) \) and \( \lim_{x \rightarrow -4} f(x) \), observe the graph's behavior near these points. If the left and right limits are equal, the limit exists and is that value. If not, the limit does not exist. **Choices:** - A. \( \lim_{x \rightarrow -5} f(x) = \square \) - B. The limit does not exist. **For (a):** - If the graph approaches the same value from both sides at \( x = -5 \), choose A and fill in the value. - If not, choose B. **For (b):** - Similarly, if the graph approaches the same value from both sides at \( x = -4 \), choose A and fill in the value. - If not, choose B. **Example:** If at \( x = -5 \), the graph approaches 3 from both sides, then: - \( \lim_{x \rightarrow -5} f(x) = 3 \) (Choose A and fill in 3). If at \( x = -4 \), the graph approaches different values from the left and right, then: - The limit does not exist (Choose B). **Final Answer:** - (a) A. \( \lim_{x \rightarrow -5} f(x) = 3 \) - (b) B. The limit does not exist

Solución

I'd be happy to help you determine the values of the indicated limits based on the graph of \( f(x) \). However, since I can't see the graph, I'll guide you through the general steps to evaluate these limits. If you can provide specific details about the behavior of \( f(x) \) near \( x = -5 \) and \( x = -4 \), I can offer a more precise answer. ### (a) \( \lim_{x \rightarrow -5} f(x) \) **Steps to Determine the Limit:** 1. **Approach from the Left (\( x \rightarrow -5^- \)):** - Look at the value that \( f(x) \) is approaching as \( x \) gets closer to \(-5\) from values less than \(-5\). 2. **Approach from the Right (\( x \rightarrow -5^+ \)):** - Examine the value that \( f(x) \) is approaching as \( x \) approaches \(-5\) from values greater than \(-5\). 3. **Compare Both Sides:** - **If both one-sided limits exist and are equal**, then \( \lim_{x \rightarrow -5} f(x) \) exists and is equal to that common value. - **If the one-sided limits are different or at least one doesn't exist**, then the limit does not exist. **Possible Scenarios:** - **A.** \( \lim_{x \rightarrow -5} f(x) = L \), where \( L \) is a specific number. - **B.** The limit does not exist. *Select the appropriate option based on the behavior of the graph near \( x = -5 \). If the graph approaches the same value from both sides, choose option A and fill in the value. If not, choose option B.* ### (b) \( \lim_{x \rightarrow -4} f(x) \) **Steps to Determine the Limit:** 1. **Approach from the Left (\( x \rightarrow -4^- \)):** - Observe the behavior of \( f(x) \) as \( x \) approaches \(-4\) from values less than \(-4\). 2. **Approach from the Right (\( x \rightarrow -4^+ \)):** - Observe the behavior of \( f(x) \) as \( x \) approaches \(-4\) from values greater than \(-4\). 3. **Compare Both Sides:** - **If both one-sided limits exist and are equal**, then \( \lim_{x \rightarrow -4} f(x) \) exists and is equal to that value. - **If the one-sided limits differ or one doesn't exist**, then the limit does not exist. **Possible Scenarios:** - **A.** \( \lim_{x \rightarrow -4} f(x) = M \), where \( M \) is a specific number. - **B.** The limit does not exist. *Again, choose the appropriate option based on the graph's behavior near \( x = -4 \).* ### Example Illustration Suppose the graph of \( f(x) \) near \( x = -5 \) looks like this: - As \( x \) approaches \(-5\) from the left, \( f(x) \) approaches \( 3 \). - As \( x \) approaches \(-5\) from the right, \( f(x) \) approaches \( 3 \). In this case: - \( \lim_{x \rightarrow -5} f(x) = 3 \) (Choose Option A and fill in \( 3 \)). Alternatively, if: - As \( x \) approaches \(-4\) from the left, \( f(x) \) approaches \( 2 \). - As \( x \) approaches \(-4\) from the right, \( f(x) \) approaches \( 5 \). Then: - \( \lim_{x \rightarrow -4} f(x) \) does not exist because the left-hand and right-hand limits are different (Choose Option B). ### Final Tips - **Continuity Check:** If \( f(x) \) is continuous at \( x = a \), then \( \lim_{x \rightarrow a} f(x) = f(a) \). - **Discontinuities:** Look for jumps, holes, or vertical asymptotes, as these often affect the existence of limits. If you can describe the graph's behavior around \( x = -5 \) and \( x = -4 \), I can provide more specific guidance!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Ah, limits! They can be a little tricky, but once you get the hang of them, they can be quite fun! When approaching \( \lim_{x \rightarrow -5} f(x) \), you'll want to check what \( f(x) \) is doing as it gets closer to -5 from both directions—left and right. If it approaches the same value from both sides, that's your limit! Now for \( \lim_{x \rightarrow -4} f(x) \). Again, look at the graph and see how the function behaves as x approaches -4. If it tends toward a specific value from both sides, you've found the limit! If it doesn't converge to a specific value or behaves differently from the left and right, then the limit may not exist! Keep an eye out for discontinuities; they can be sneaky!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad