Question 5 of 9 . Step 1 of 1 Growing linearly, the balance owed on your credit card doubles from \( \$ 700 \) to \( \$ 1400 \) in 6 months. If the balance were growing according to the exponential function \( f(x)=700(1+0.122)^{x} \) where \( x \) represents the number of months, what would the balance be after 6 months? Round your answer to the nearest cent. Quns
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the balance after 6 months using the given exponential function \( f(x) = 700(1 + 0.122)^{x} \), simply substitute \( x \) with 6: \[ f(6) = 700(1 + 0.122)^{6} = 700(1.122)^{6} \] Calculating \( (1.122)^{6} \) gives approximately 1.8994. Now multiply this by 700: \[ f(6) \approx 700 \times 1.8994 \approx 1329.58 \] Thus, rounding to the nearest cent, the balance would be approximately \( \$1329.58 \). Now you have your answer for the balance after 6 months, so make sure to keep track of those credit card charges! Remember, an exponential growth in debt can sneak up on you faster than you'd think!