Use transformations of \( f(x)=x^{2} \) to graph the following function. \( g(x)=x^{2}-2 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To graph \( g(x) = x^2 - 2 \) using transformations of \( f(x) = x^2 \), start with the basic parabola of \( f(x) \), which opens upwards with its vertex at the origin (0, 0). The transformation involves shifting this graph downward by 2 units. This means that the vertex of the graph of \( g(x) \) will move from (0, 0) to (0, -2), indicating that all points on the original parabola slide down by 2. To visualize the entire graph, take some key points from \( f(x) \). For example, the points (1, 1) and (-1, 1) from \( f(x) \) will shift to (1, -1) and (-1, -1) for \( g(x) \), respectively. The result is a parabola with its vertex at (0, -2) that maintains the same width as the original graph of \( f(x) \).