Pregunta
upstudy study bank question image url

\( X \) is a normally distributed random variable with mean 36 and standard deviation 20 . What is the probability that \( X \) is between 16 and 96 ? Use the \( 0.68-0.95-0.997 \) rule and write your answer as a decimal. Round to the nearest thousandth if necessary.

Ask by Daniel Todd. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( X \) is between 16 and 96 is 0.95.

Solución

To find the probability that \( X \) is between 16 and 96, we can use the 68-95-99.7 rule for a normal distribution. Given: - Mean (\( \mu \)) = 36 - Standard Deviation (\( \sigma \)) = 20 The 68-95-99.7 rule states that: - About 68% of the data falls within 1 standard deviation of the mean. - About 95% of the data falls within 2 standard deviations of the mean. - About 99.7% of the data falls within 3 standard deviations of the mean. Since we are interested in the probability that \( X \) is between 16 and 96, we need to find the range within 2 standard deviations of the mean. 1 standard deviation = 20 2 standard deviations = 2 * 20 = 40 The range within 2 standard deviations of the mean is from 36 - 40 to 36 + 40, which is from 16 to 96. Therefore, the probability that \( X \) is between 16 and 96 is approximately 95% or 0.95.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that \( X \) is between 16 and 96, we first need to consider the mean and standard deviation of the distribution. The mean (μ) is 36, and the standard deviation (σ) is 20. Now, we can determine how many standard deviations 16 and 96 are from the mean: 1. For 16: \[ z_1 = \frac{16 - 36}{20} = \frac{-20}{20} = -1 \] 2. For 96: \[ z_2 = \frac{96 - 36}{20} = \frac{60}{20} = 3 \] Using the \( 0.68-0.95-0.997 \) rule for normal distributions, we can assess probabilities based on these z-scores: - The probability that \( X \) is within 1 standard deviation of the mean (from \( \mu - \sigma \) to \( \mu + \sigma \), or 16 to 56) is approximately 68%. - The probability that \( X \) is within 3 standard deviations (from \( \mu - 3\sigma \) to \( \mu + 3\sigma \), or -24 to 96) is approximately 99.7%. Since we want the probability of \( X \) being between 16 and 96, we can combine these two ranges: 1. From 16 to 56 gives us 68%. 2. From 56 to 96 adds the area from 56 to 96, which is half of the remaining area outside of -1 to 3, about 31.7% (half of (99.7% - 68%)). Thus: \[ P(16 < X < 96) \approx 68\% + 31.7\% = 99.7\% \] Converting this to a decimal gives approximately \( 0.997 \). So, the final answer rounded to the nearest thousandth is: \[ \boxed{0.997} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad