Pregunta
upstudy study bank question image url

\( (-4,3) \) 0.16 0.12 0.03 4. Choose the correct answer. You have a multiple-choice test of 25 questions with 4 choices for each question. You choose each answer at random and get 4 answers correct. What is the probabilit 0.04

Ask by Salinas Bradley. in the United States
Jan 26,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of getting 4 correct answers out of 25 questions is calculated using the binomial probability formula, resulting in \( \frac{4 \times 24^{21} \times 0.04^2}{25^{24}} \).

Solución

To find the probability of getting 4 correct answers out of 25 questions, we can use the binomial probability formula. The binomial probability formula is given by: \[ P(X = k) = \binom{n}{k} \times p^k \times (1-p)^{n-k} \] Where: - \( n \) is the total number of trials (questions in this case), - \( k \) is the number of successful trials (correct answers), - \( p \) is the probability of success (getting a correct answer) on a single trial. In this case, we have: - \( n = 25 \) (total number of questions), - \( k = 4 \) (number of correct answers), - \( p = 0.04 \) (probability of getting a correct answer). Substitute these values into the binomial probability formula to find the probability of getting 4 correct answers out of 25 questions. Simplify the expression by following steps: - step0: Solution: \(25cho\times ose\times 4\times 0.04^{4}\left(1-0.04\right)^{21}\) - step1: Subtract the numbers: \(25cho\times ose\times 4\times 0.04^{4}\times 0.96^{21}\) - step2: Convert the expressions: \(25cho\times ose\times 4\left(\frac{1}{25}\right)^{4}\times 0.96^{21}\) - step3: Convert the expressions: \(25cho\times ose\times 4\left(\frac{1}{25}\right)^{4}\left(\frac{24}{25}\right)^{21}\) - step4: Transform the expression: \(25cho\times ose\times 4\times 25^{-4}\left(\frac{24}{25}\right)^{21}\) - step5: Multiply the terms: \(25^{1-4}cho\times ose\times 4\left(\frac{24}{25}\right)^{21}\) - step6: Subtract the numbers: \(25^{-3}cho\times ose\times 4\left(\frac{24}{25}\right)^{21}\) - step7: Multiply the terms: \(25^{-3}cho^{2}se\times 4\left(\frac{24}{25}\right)^{21}\) - step8: Multiply the terms: \(\frac{ch}{25^{3}}\times o^{2}se\times 4\left(\frac{24}{25}\right)^{21}\) - step9: Multiply the terms: \(\frac{cho^{2}}{25^{3}}\times se\times 4\left(\frac{24}{25}\right)^{21}\) - step10: Multiply the terms: \(\frac{cho^{2}s}{25^{3}}\times e\times 4\left(\frac{24}{25}\right)^{21}\) - step11: Multiply the terms: \(\frac{echo^{2}s}{25^{3}}\times 4\left(\frac{24}{25}\right)^{21}\) - step12: Multiply the terms: \(\frac{4echo^{2}s}{25^{3}}\times \left(\frac{24}{25}\right)^{21}\) - step13: Rewrite the expression: \(\frac{4echo^{2}s}{25^{3}}\times \frac{24^{21}}{25^{21}}\) - step14: Multiply the terms: \(\frac{4echo^{2}s\times 24^{21}}{25^{3}\times 25^{21}}\) - step15: Multiply the terms: \(\frac{4\times 24^{21}echo^{2}s}{25^{3}\times 25^{21}}\) - step16: Multiply the terms: \(\frac{4\times 24^{21}echo^{2}s}{25^{24}}\) The probability of getting 4 correct answers out of 25 questions is \( \frac{4 \times 24^{21} \times 0.04^2}{25^{24}} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The situation you described can be modeled using the binomial probability formula. When you answer each of the 25 questions randomly with 4 choices, the chance of getting a question correct is \( \frac{1}{4} \) (or 0.25). With 4 correct answers out of 25, the probability you achieved can be computed using the binomial distribution. For your scenario, the probability of getting exactly 4 answers correct can be calculated as: \[ P(X = k) = \binom{n}{k} p^k (1 - p)^{n - k} \] Where \( n \) is the total number of trials (25), \( k \) is the number of successes (4), and \( p \) is the probability of success on an individual trial (0.25). Plugging in those values yields approximately 0.04, which means there's a 4% chance of answering exactly 4 questions correctly when guessing randomly. Understanding the idea behind random guessing can also help clarify why it's so challenging to get a significant number of questions right purely by chance!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad