Responder
The probability of getting 4 correct answers out of 25 questions is calculated using the binomial probability formula, resulting in \( \frac{4 \times 24^{21} \times 0.04^2}{25^{24}} \).
Solución
To find the probability of getting 4 correct answers out of 25 questions, we can use the binomial probability formula.
The binomial probability formula is given by:
\[ P(X = k) = \binom{n}{k} \times p^k \times (1-p)^{n-k} \]
Where:
- \( n \) is the total number of trials (questions in this case),
- \( k \) is the number of successful trials (correct answers),
- \( p \) is the probability of success (getting a correct answer) on a single trial.
In this case, we have:
- \( n = 25 \) (total number of questions),
- \( k = 4 \) (number of correct answers),
- \( p = 0.04 \) (probability of getting a correct answer).
Substitute these values into the binomial probability formula to find the probability of getting 4 correct answers out of 25 questions.
Simplify the expression by following steps:
- step0: Solution:
\(25cho\times ose\times 4\times 0.04^{4}\left(1-0.04\right)^{21}\)
- step1: Subtract the numbers:
\(25cho\times ose\times 4\times 0.04^{4}\times 0.96^{21}\)
- step2: Convert the expressions:
\(25cho\times ose\times 4\left(\frac{1}{25}\right)^{4}\times 0.96^{21}\)
- step3: Convert the expressions:
\(25cho\times ose\times 4\left(\frac{1}{25}\right)^{4}\left(\frac{24}{25}\right)^{21}\)
- step4: Transform the expression:
\(25cho\times ose\times 4\times 25^{-4}\left(\frac{24}{25}\right)^{21}\)
- step5: Multiply the terms:
\(25^{1-4}cho\times ose\times 4\left(\frac{24}{25}\right)^{21}\)
- step6: Subtract the numbers:
\(25^{-3}cho\times ose\times 4\left(\frac{24}{25}\right)^{21}\)
- step7: Multiply the terms:
\(25^{-3}cho^{2}se\times 4\left(\frac{24}{25}\right)^{21}\)
- step8: Multiply the terms:
\(\frac{ch}{25^{3}}\times o^{2}se\times 4\left(\frac{24}{25}\right)^{21}\)
- step9: Multiply the terms:
\(\frac{cho^{2}}{25^{3}}\times se\times 4\left(\frac{24}{25}\right)^{21}\)
- step10: Multiply the terms:
\(\frac{cho^{2}s}{25^{3}}\times e\times 4\left(\frac{24}{25}\right)^{21}\)
- step11: Multiply the terms:
\(\frac{echo^{2}s}{25^{3}}\times 4\left(\frac{24}{25}\right)^{21}\)
- step12: Multiply the terms:
\(\frac{4echo^{2}s}{25^{3}}\times \left(\frac{24}{25}\right)^{21}\)
- step13: Rewrite the expression:
\(\frac{4echo^{2}s}{25^{3}}\times \frac{24^{21}}{25^{21}}\)
- step14: Multiply the terms:
\(\frac{4echo^{2}s\times 24^{21}}{25^{3}\times 25^{21}}\)
- step15: Multiply the terms:
\(\frac{4\times 24^{21}echo^{2}s}{25^{3}\times 25^{21}}\)
- step16: Multiply the terms:
\(\frac{4\times 24^{21}echo^{2}s}{25^{24}}\)
The probability of getting 4 correct answers out of 25 questions is \( \frac{4 \times 24^{21} \times 0.04^2}{25^{24}} \).
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución