Pregunta
upstudy study bank question image url

Use the given function to complete parts (a) through (e) below. \( f(x)=x^{4}-9 x^{2} \) a) Use the Leading coefficient Test to determine the graph's end behavior. A. The graph of \( f(x) \) rises left and falls right. B. The graph of \( f(x) \) rises left and rises right. C. The graph of \( f(x) \) falls left and falls right. D. The graph of \( f(x) \) falls left and rises right. b) Find the \( x \)-intercepts. \( x=\square \) (Type an integer or a decimal. Use a comma to separate answers as needed.) ( 0 .

Ask by King Dickson. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** B. The graph of \( f(x) \) rises left and rises right. **Part (b):** \( x = 0, 3, -3 \)

Solución

To solve the problem step by step, let's start with part (a) and then move on to part (b). ### Part (a): Leading Coefficient Test The function given is: \[ f(x) = x^4 - 9x^2 \] 1. **Identify the leading term**: The leading term of the polynomial is \( x^4 \). 2. **Determine the leading coefficient**: The leading coefficient is \( 1 \) (which is positive). 3. **Degree of the polynomial**: The degree of the polynomial is \( 4 \) (which is even). According to the Leading Coefficient Test: - If the leading coefficient is positive and the degree is even, the graph rises to the left and rises to the right. Thus, the correct answer for part (a) is: **B. The graph of \( f(x) \) rises left and rises right.** ### Part (b): Finding the \( x \)-intercepts To find the \( x \)-intercepts, we need to set \( f(x) = 0 \): \[ x^4 - 9x^2 = 0 \] 1. **Factor the equation**: We can factor out \( x^2 \): \[ x^2(x^2 - 9) = 0 \] 2. **Set each factor to zero**: - \( x^2 = 0 \) gives \( x = 0 \). - \( x^2 - 9 = 0 \) gives \( x^2 = 9 \), which results in \( x = 3 \) and \( x = -3 \). Thus, the \( x \)-intercepts are: \[ x = 0, 3, -3 \] So, the answer for part (b) is: \[ x = 0, 3, -3 \] In summary: - **Part (a)**: B. The graph of \( f(x) \) rises left and rises right. - **Part (b)**: \( x = 0, 3, -3 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The function \( f(x) = x^4 - 9x^2 \) is a polynomial of degree 4, and since the leading coefficient (the coefficient in front of \( x^4 \)) is positive, we can determine that the graph will rise to the left and rise to the right. So, the answer is B: The graph of \( f(x) \) rises left and rises right. To find the \( x \)-intercepts, we set the function equal to zero: $$x^4 - 9x^2 = 0$$ Factoring out \( x^2 \), we have: $$x^2(x^2 - 9) = 0$$ This gives us \( x^2 = 0 \) or \( x^2 - 9 = 0 \). Solving these, we find \( x = 0, 3, -3 \). Therefore, the \( x \)-intercepts are \( x = 0, 3, -3 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad