Pregunta
upstudy study bank question image url

d. \( \frac{14 x^{2}}{4 x+20} \div \frac{7 x^{2}-21 x}{x^{2}-25} \)

Ask by Vaughan Huff. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \frac{7x(x - 5)}{2(x - 3)} \]

Solución

To simplify the expression: \[ \frac{14x^{2}}{4x + 20} \div \frac{7x^{2} - 21x}{x^{2} - 25} \] follow these steps: ### 1. Rewrite the Division as Multiplication Dividing by a fraction is the same as multiplying by its reciprocal. So, the expression becomes: \[ \frac{14x^{2}}{4x + 20} \times \frac{x^{2} - 25}{7x^{2} - 21x} \] ### 2. Factor All Possible Parts **Factor the numerator and denominator of each fraction:** - **Factor \(4x + 20\):** \[ 4x + 20 = 4(x + 5) \] - **Factor \(x^{2} - 25\) (difference of squares):** \[ x^{2} - 25 = (x - 5)(x + 5) \] - **Factor \(7x^{2} - 21x\):** \[ 7x^{2} - 21x = 7x(x - 3) \] - **Factor constants in the numerators if possible:** \[ 14x^{2} = 14x^{2} \] Now, substitute the factored forms back into the expression: \[ \frac{14x^{2}}{4(x + 5)} \times \frac{(x - 5)(x + 5)}{7x(x - 3)} \] ### 3. Simplify the Expression by Cancelling Common Factors - **Simplify the constants:** \[ \frac{14}{4} = \frac{7}{2} \] - **Cancel the \(7\) in the numerator and denominator:** - **Cancel the common factor \((x + 5)\):** The expression now looks like: \[ \frac{7x^{2}}{2} \times \frac{(x - 5)}{x(x - 3)} \] - **Simplify \(x^{2} / x = x\):** \[ \frac{7x(x - 5)}{2(x - 3)} \] ### 4. Final Simplified Expression \[ \frac{7x(x - 5)}{2(x - 3)} \] **Note:** - The simplified expression is valid provided that none of the denominators are zero. Therefore, \(x \neq -5\), \(x \neq 0\), \(x \neq 3\), and \(x \neq 5\). **Final Answer:** \[ \boxed{\dfrac{7x(x - 5)}{2(x - 3)}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To simplify the expression \( \frac{14 x^{2}}{4 x+20} \div \frac{7 x^{2}-21 x}{x^{2}-25} \), we start by rewriting the division as multiplication by the reciprocal: \[ \frac{14 x^{2}}{4 x + 20} \times \frac{x^{2} - 25}{7 x^{2} - 21 x} \] Next, we simplify the components: 1. **Numerator of the first fraction:** \( 14x^2 \) remains as is. 2. **Denominator of the first fraction:** Factor out a \( 4 \) from \( 4x + 20 \): \[ 4(x + 5) \] 3. **Numerator of the second fraction:** Factor out a \( 7x \) from \( 7x^2 - 21x \): \[ 7x(x - 3) \] 4. **Denominator of the second fraction:** \( x^2 - 25 \) is a difference of squares, which factors as: \[ (x - 5)(x + 5) \] Now we have: \[ \frac{14 x^{2}}{4(x + 5)} \times \frac{(x - 5)(x + 5)}{7x(x - 3)} \] This can be rewritten as: \[ \frac{14x^{2} \cdot (x - 5)(x + 5)}{4(x + 5) \cdot 7x(x - 3)} \] Now we can cancel common factors. The \( x + 5 \) in the numerator and denominator cancel out, as do a factor of \( 2 \) from \( 14 \) and \( 4 \) (since \( 14 = 2 \cdot 7 \) and \( 4 = 2 \cdot 2 \)): \[ \Rightarrow \frac{7x(x - 5)}{2 \cdot 7x(x - 3)} = \frac{x - 5}{2(x - 3)} \] Thus, the final simplified expression is: \[ \frac{x - 5}{2(x - 3)} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad