d. \( \frac{14 x^{2}}{4 x+20} \div \frac{7 x^{2}-21 x}{x^{2}-25} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \frac{14 x^{2}}{4 x+20} \div \frac{7 x^{2}-21 x}{x^{2}-25} \), we start by rewriting the division as multiplication by the reciprocal: \[ \frac{14 x^{2}}{4 x + 20} \times \frac{x^{2} - 25}{7 x^{2} - 21 x} \] Next, we simplify the components: 1. **Numerator of the first fraction:** \( 14x^2 \) remains as is. 2. **Denominator of the first fraction:** Factor out a \( 4 \) from \( 4x + 20 \): \[ 4(x + 5) \] 3. **Numerator of the second fraction:** Factor out a \( 7x \) from \( 7x^2 - 21x \): \[ 7x(x - 3) \] 4. **Denominator of the second fraction:** \( x^2 - 25 \) is a difference of squares, which factors as: \[ (x - 5)(x + 5) \] Now we have: \[ \frac{14 x^{2}}{4(x + 5)} \times \frac{(x - 5)(x + 5)}{7x(x - 3)} \] This can be rewritten as: \[ \frac{14x^{2} \cdot (x - 5)(x + 5)}{4(x + 5) \cdot 7x(x - 3)} \] Now we can cancel common factors. The \( x + 5 \) in the numerator and denominator cancel out, as do a factor of \( 2 \) from \( 14 \) and \( 4 \) (since \( 14 = 2 \cdot 7 \) and \( 4 = 2 \cdot 2 \)): \[ \Rightarrow \frac{7x(x - 5)}{2 \cdot 7x(x - 3)} = \frac{x - 5}{2(x - 3)} \] Thus, the final simplified expression is: \[ \frac{x - 5}{2(x - 3)} \]