Pregunta
upstudy study bank question image url

Use transformations of \( f(x)=x^{2} \) to graph the following function. What transformations are needed to graph the function \( =(x-6)^{2}+2 \) \( h(x)=(x-6)^{2}+2 \) ? Choose the correct answer below. A. The graph of \( f(x)=x^{2} \) should be horizontally shifted to the left by 6 units and vertically shifted down by 2 units. B. The graph of \( f(x)=x^{2} \) should be horizontally shifted to the left by 6 units and vertically shifted up by 2 units. C. The graph of \( f(x)=x^{2} \) should be horizontally \( \begin{array}{l}\text { Thifted to the right by } 6 \text { units and vertically } \\ \text { shifted up by } 2 \text { units. }\end{array} \)

Ask by Johnson Colon. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To graph \( h(x) = (x-6)^{2} + 2 \), shift the graph of \( f(x) = x^{2} \) **right by 6 units** and **up by 2 units**.

Solución

To graph the function \( h(x) = (x-6)^{2} + 2 \) using transformations of \( f(x) = x^{2} \), we can analyze the changes step-by-step. **General Form of Quadratic Transformations:** \[ g(x) = a(x - h)^{2} + k \] - **\( h \)**: Horizontal shift. - If \( h > 0 \), the graph shifts **right** by \( h \) units. - If \( h < 0 \), the graph shifts **left** by \( |h| \) units. - **\( k \)**: Vertical shift. - If \( k > 0 \), the graph shifts **up** by \( k \) units. - If \( k < 0 \), the graph shifts **down** by \( |k| \) units. **Applying to \( h(x) = (x-6)^{2} + 2 \):** - **Horizontal Shift (\( h = 6 \))**: - Since \( h = 6 \) is positive, the graph shifts **right** by **6 units**. - **Vertical Shift (\( k = 2 \))**: - Since \( k = 2 \) is positive, the graph shifts **up** by **2 units**. **Conclusion:** To graph \( h(x) = (x-6)^{2} + 2 \), you should shift the graph of \( f(x) = x^{2} \) **right by 6 units** and **up by 2 units**. **Correct Answer:** **C. The graph of \( f(x)=x^{2} \) should be horizontally shifted to the right by 6 units and vertically shifted up by 2 units.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To graph the function \( h(x)=(x-6)^{2}+2 \), we begin with the parent function \( f(x)=x^{2} \). The expression inside the parentheses, \( (x-6) \), indicates a horizontal shift. Since it is \( (x-6) \), we shift the graph to the right by 6 units. The \( +2 \) outside the square indicates a vertical shift, moving the graph upwards by 2 units. So, the answer is C: The graph of \( f(x)=x^{2} \) should be horizontally shifted to the right by 6 units and vertically shifted up by 2 units. In the world of graphing, visualizing transformations is like moving from one party to another! Each transformation is a fun way to tour different coordinates—bumping the party left (horizontal shift), moving it up (vertical shift), or flipping it upside down (reflection). So put on your graphing shoes and get ready to dance!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad