Pregunta
upstudy study bank question image url

7. Airline fares for a flight from Dallas to Austin are \( \$ 30 \) for first class and \( \$ 25 \) for tourist class. If a flight had 52 passengers who paid \( \$ 1360 \), how many first class and tourist class passengers were there?

Ask by Mejia Pollard. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There were 12 first class passengers and 40 tourist class passengers on the flight.

Solución

To determine the number of first class and tourist class passengers on the flight from Dallas to Austin, we can set up a system of equations based on the given information. **Let:** - \( f \) = number of first class passengers - \( t \) = number of tourist class passengers **Given:** 1. The total number of passengers is 52: \[ f + t = 52 \quad \text{(Equation 1)} \] 2. The total revenue from fares is \$1360: \[ 30f + 25t = 1360 \quad \text{(Equation 2)} \] **Steps to Solve:** 1. **Solve Equation 1 for \( f \):** \[ f = 52 - t \] 2. **Substitute \( f = 52 - t \) into Equation 2:** \[ 30(52 - t) + 25t = 1360 \] 3. **Expand and simplify:** \[ 1560 - 30t + 25t = 1360 \] \[ 1560 - 5t = 1360 \] 4. **Solve for \( t \):** \[ -5t = 1360 - 1560 \] \[ -5t = -200 \] \[ t = \frac{-200}{-5} = 40 \] 5. **Find \( f \) using the value of \( t \):** \[ f = 52 - 40 = 12 \] **Conclusion:** - **First Class Passengers:** 12 - **Tourist Class Passengers:** 40 **Verification:** - Total passengers: \( 12 + 40 = 52 \) ✓ - Total revenue: \( (12 \times 30) + (40 \times 25) = 360 + 1000 = 1360 \) ✓ **Answer:** There were 12 first class passengers and 40 tourist class passengers on the flight.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how many first class and tourist class passengers were on the flight, we can set up a system of equations. Let \( x \) be the number of first class passengers and \( y \) be the number of tourist class passengers. We have two equations based on the problem: 1. \( x + y = 52 \) (total passengers) 2. \( 30x + 25y = 1360 \) (total fare) Now we can solve these equations: From the first equation, we can express \( y \) as: \( y = 52 - x \) Next, substitute \( y \) in the second equation: \( 30x + 25(52 - x) = 1360 \) Expanding this gives: \( 30x + 1300 - 25x = 1360 \) Combining like terms, we have: \( 5x + 1300 = 1360 \) Subtracting 1300 from both sides results in: \( 5x = 60 \) Now, divide by 5: \( x = 12 \) Using the value of \( x \) to find \( y \): \( y = 52 - 12 = 40 \) Thus, there were 12 first class passengers and 40 tourist class passengers on the flight.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad