Solve the equation on the interval \( 0 \leq \theta<2 \pi \). \( 2 \cos (2 \theta)=6 \cos \theta-4 \) Select the correct choice below and fill in any answer boxes in your choice. A. \( \theta=\{ \} \) radians (Simplify your answer. Type an exact answer, using \( \pi \) as needed. Type your answer in radians. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.) B. There is no solution on this interval.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To solve the equation \( 2 \cos(2\theta) = 6 \cos \theta - 4 \), we start by using the double angle identity for cosine: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Substituting this into the original equation gives: \[ 2(2\cos^2(\theta) - 1) = 6 \cos \theta - 4 \] This simplifies to: \[ 4\cos^2(\theta) - 2 = 6\cos \theta - 4 \] Rearranging the equation: \[ 4\cos^2(\theta) - 6\cos \theta + 2 = 0 \] Using the quadratic formula \( \cos \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) with \( a = 4, b = -6, c = 2 \): \[ \cos \theta = \frac{6 \pm \sqrt{(-6)^2 - 4 \cdot 4 \cdot 2}}{2 \cdot 4} \] Calculating the discriminant: \[ \sqrt{36 - 32} = \sqrt{4} = 2 \] Now substituting back into the equation: \[ \cos \theta = \frac{6 \pm 2}{8} \] We have two cases: 1. \( \cos \theta = \frac{8}{8} = 1 \) 2. \( \cos \theta = \frac{4}{8} = \frac{1}{2} \) For \( \cos \theta = 1 \) on the interval \( 0 \leq \theta < 2\pi \), we have: \[ \theta = 0 \] For \( \cos \theta = \frac{1}{2} \), we have: \[ \theta = \frac{\pi}{3}, \frac{5\pi}{3} \] Combining all solutions, we get: \[ \theta = \{ 0, \frac{\pi}{3}, \frac{5\pi}{3} \} \] So the final answer is: A. \( \theta=\{ 0, \frac{\pi}{3}, \frac{5\pi}{3} \} \) radians