Pregunta
upstudy study bank question image url

Interest rate. Upstate Bank is offering long-term certificates of deposit with a face value of \( \$ 100,000 \) (future value). Bank customers can buy these CDs today for \( \$ 45,000 \) and will receive the \( \$ 100,000 \) in 20 years. What interest rate is the bank paying on these CDs? What interest rate is the bank paying on these CDs? \( \square \% \) (Round to two decimal plices.)

Ask by Craig Simpson. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The bank is paying an interest rate of approximately 4.07% on these CDs.

Solución

To find the interest rate that the bank is paying on these CDs, we can use the formula for compound interest: \[ A = P(1 + \frac{r}{100})^n \] where: - \( A \) is the future value of the investment (in this case, $100,000), - \( P \) is the present value of the investment (in this case, $45,000), - \( r \) is the interest rate (which we need to find), - \( n \) is the number of years (in this case, 20 years). Given that the present value of the investment is $45,000 and the future value is $100,000, we can rearrange the formula to solve for the interest rate \( r \): \[ 100,000 = 45,000(1 + \frac{r}{100})^{20} \] Now, we can solve for \( r \) to find the interest rate that the bank is paying on these CDs. Solve the equation by following steps: - step0: Solve for \(r\): \(100000=45000\left(1+\frac{r}{100}\right)^{20}\) - step1: Swap the sides: \(45000\left(1+\frac{r}{100}\right)^{20}=100000\) - step2: Divide both sides: \(\frac{45000\left(1+\frac{r}{100}\right)^{20}}{45000}=\frac{100000}{45000}\) - step3: Divide the numbers: \(\left(1+\frac{r}{100}\right)^{20}=\frac{20}{9}\) - step4: Simplify the expression: \(1+\frac{r}{100}=\pm \sqrt[20]{\frac{20}{9}}\) - step5: Simplify: \(1+\frac{r}{100}=\pm \frac{\sqrt[20]{20\times 19683^{2}}}{3}\) - step6: Separate into possible cases: \(\begin{align}&1+\frac{r}{100}=\frac{\sqrt[20]{20\times 19683^{2}}}{3}\\&1+\frac{r}{100}=-\frac{\sqrt[20]{20\times 19683^{2}}}{3}\end{align}\) - step7: Calculate: \(\begin{align}&r=\frac{100\sqrt[20]{20\times 19683^{2}}-300}{3}\\&r=-\frac{100\sqrt[20]{20\times 19683^{2}}+300}{3}\end{align}\) - step8: Rewrite: \(r_{1}=-\frac{100\sqrt[20]{20\times 19683^{2}}+300}{3},r_{2}=\frac{100\sqrt[20]{20\times 19683^{2}}-300}{3}\) The interest rate that the bank is paying on these CDs is approximately 4.07%.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the interest rate being paid on the CDs, we can use the formula for the future value of a single sum, which is given by: \[ FV = PV(1 + r)^n \] Where: - \( FV \) is the future value, - \( PV \) is the present value, - \( r \) is the interest rate (as a decimal), - \( n \) is the number of years. In this scenario, we have: - \( FV = 100,000 \) - \( PV = 45,000 \) - \( n = 20 \) Rearranging the formula to solve for \( r \): \[ 100,000 = 45,000(1 + r)^{20} \] First, divide both sides by \( 45,000 \): \[ \frac{100,000}{45,000} = (1 + r)^{20} \] This simplifies to: \[ \frac{100}{45} = (1 + r)^{20} \] Next, calculate \( \frac{100}{45} \): \[ 2.2222 \approx (1 + r)^{20} \] Now, take the 20th root of both sides to isolate \( (1 + r) \): \[ 1 + r = (2.2222)^{\frac{1}{20}} \] Calculating this gives: \[ 1 + r \approx 1.08315 \] Subtracting 1: \[ r \approx 0.08315 \] Converting to a percentage gives \( r \approx 8.32\% \). So, the bank is paying an interest rate of approximately \( 8.32\% \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad