Pregunta
upstudy study bank question image url

Use \( -\infty \) or \( \infty \) where appropriate to describe the behavior at each zero of the denominator and identify all vertical asymptotes. \[ f(x)=\frac{3 x}{x+6} \] Locate all zeros of the denominator and describe the behavior of the function at those values. Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. A. There are two zeros. The smaller zero is \( x= \) \( \square \) and the larger zero is \( x= \) \( \square \) As \( x \) approaches the smaller zero from the left and right, \( f(x) \) approaches \( \square \) and \( \square \) respectively. As x approaches the larger zero from the left and right, \( f(x) \) approaches \( \square \) and \( \square \) , respectively. B. There is one zero, at \( x= \) \( \square \) As x approaches this zero from the left and right, \( \mathrm{f}(\mathrm{x}) \) approaches \( \square \) and \( \square \) respectively. C. There are no zeros of the denominator. Identify all vertical asymptotes. Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. A. From left to right the asymptotes are \( \square \) , \( \square \). and \( \square \) (Type equations.) B. From left to right the asymptotes are \( \square \) and \( \square \) . (Type equations.) C. The asymptote is \( \square \) (Type an equation.) D. The function has no vertical asymptotes.

Ask by Mitchell Ramirez. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is one zero at \( x = -6 \). As \( x \) approaches \(-6\) from the left, \( f(x) \) approaches \( +\infty \), and from the right, it approaches \( -\infty \). The vertical asymptote is at \( x = -6 \).

Solución

Let's analyze the function \( f(x) = \frac{3x}{x + 6} \) to identify the zeros of the denominator, describe the behavior of the function near those points, and determine the vertical asymptotes. ### 1. Zeros of the Denominator and Function Behavior **Denominator Zero:** The denominator \( x + 6 \) is zero when: \[ x + 6 = 0 \implies x = -6 \] So, there is **one zero** of the denominator at \( x = -6 \). **Behavior Near \( x = -6 \):** - **As \( x \) approaches \(-6\) from the **left** (\( x \to -6^- \)): \[ f(x) = \frac{3x}{x + 6} \approx \frac{3(-6)}{\text{small negative}} = \frac{-18}{\text{small negative}} \to +\infty \] - **As \( x \) approaches \(-6\) from the **right** (\( x \to -6^+ \)): \[ f(x) = \frac{3x}{x + 6} \approx \frac{3(-6)}{\text{small positive}} = \frac{-18}{\text{small positive}} \to -\infty \] **Conclusion for Zeros of the Denominator:** - **Option B** is correct. **Filled-in Choice B:** > There is one zero, at \( x = -6 \). As \( x \) approaches this zero from the left and right, \( f(x) \) approaches \( \infty \) and \( -\infty \) respectively. ### 2. Vertical Asymptotes A vertical asymptote occurs at points where the denominator is zero (and the numerator is not zero). Since the only zero of the denominator is at \( x = -6 \), there is a single vertical asymptote at this point. **Conclusion for Vertical Asymptotes:** - **Option C** is correct. **Filled-in Choice C:** > The asymptote is \( x = -6 \). ### Final Answer: **Zeros of the Denominator and Behavior:** B. There is one zero, at \( x = -6 \). As \( x \) approaches this zero from the left and right, \( f(x) \) approaches \( \infty \) and \( -\infty \) respectively. **Vertical Asymptote:** C. The asymptote is \( x = -6 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To analyze the function \( f(x)=\frac{3x}{x+6} \), let's first identify the zero of the denominator. Setting the denominator equal to zero, we have: \[ x + 6 = 0 \] Solving for \( x \), we get: \[ x = -6 \] So, there is one zero of the denominator, and as \( x \) approaches \( -6 \): - From the left (\( x \to -6^- \)), \( f(x) \to -\infty \) - From the right (\( x \to -6^+ \)), \( f(x) \to \infty \) This leads us to the selection of option B: There is one zero, at \( x= -6 \). As \( x \) approaches this zero from the left, \( f(x) \) approaches \( -\infty \) and from the right, \( f(x) \) approaches \( \infty \). For the vertical asymptotes, since we have identified one zero of the denominator at \( x = -6 \) and this value causes the denominator to be zero, there is a vertical asymptote at \( x = -6 \). Thus, the selection is C: The asymptote is \( x = -6 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad