Answer: A. \# 01 A certain television is advertised as a 38-inch TV (the diagonal length). If the width of the TV is 29 inches, how tall is the TV? Round to the nearest tenth of an inch.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the height of the TV, you can use the Pythagorean theorem. The theorem states that in a right triangle, the square of the length of the hypotenuse (the diagonal, which is 38 inches) is equal to the sum of the squares of the other two sides (the width and height). Here, \( a^2 + b^2 = c^2 \), where \( c = 38 \) inches and \( a = 29 \) inches. 1. Calculate \( c^2 \): \( 38^2 = 1444 \). 2. Calculate \( a^2 \): \( 29^2 = 841 \). 3. Set up the equation: \( 841 + b^2 = 1444 \). 4. Solve for \( b^2 \): \( b^2 = 1444 - 841 = 603 \). 5. Now find \( b \): \( b = \sqrt{603} \approx 24.5 \). So, the height of the TV is approximately 24.5 inches.