Pregunta
upstudy study bank question image url

(ii) Find the value of \( f^{\prime}(x) \) when \( x=1 \). \[ f(x)=6(1)^{2}-6(1)^{1}+7=6-6+^{\prime} \] (iii) Find the equation of the tangent to the curve \( y=f(x) \) at \( x=1 \). (A,

Ask by Campbell Floyd. in Ireland
Jan 20,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( f^{\prime}(1) = 6 \) and the equation of the tangent at \( x = 1 \) is \( y = 6x + 1 \).

Solución

Certainly! Let's tackle each part of your question step by step. --- ### Given Function: \[ f(x) = 6x^2 - 6x + 7 \] --- ### (ii) Finding \( f^{\prime}(x) \) at \( x = 1 \) **Step 1: Find the derivative \( f^{\prime}(x) \).** To find the derivative of \( f(x) \) with respect to \( x \), apply the power rule to each term: \[ f(x) = 6x^2 - 6x + 7 \] \[ f^{\prime}(x) = \frac{d}{dx}(6x^2) - \frac{d}{dx}(6x) + \frac{d}{dx}(7) \] \[ f^{\prime}(x) = 12x - 6 + 0 \] \[ f^{\prime}(x) = 12x - 6 \] **Step 2: Evaluate \( f^{\prime}(x) \) at \( x = 1 \).** \[ f^{\prime}(1) = 12(1) - 6 = 12 - 6 = 6 \] **Answer:** \[ f^{\prime}(1) = 6 \] --- ### (iii) Finding the Equation of the Tangent to the Curve \( y = f(x) \) at \( x = 1 \) To find the equation of the tangent line at a specific point on the curve, you need two pieces of information: 1. The **slope** of the tangent line at that point. 2. A **point** through which the tangent line passes. **Step 1: Determine the slope of the tangent line.** From part (ii), we have already found that: \[ f^{\prime}(1) = 6 \] So, the slope \( m \) of the tangent line at \( x = 1 \) is **6**. **Step 2: Find the point on the curve at \( x = 1 \).** Calculate \( f(1) \): \[ f(1) = 6(1)^2 - 6(1) + 7 = 6 - 6 + 7 = 7 \] So, the point of tangency is \( (1, 7) \). **Step 3: Use the point-slope form to write the equation of the tangent line.** The point-slope form of a line is: \[ y - y_1 = m(x - x_1) \] Where: - \( m \) is the slope. - \( (x_1, y_1) \) is the point on the line. Plugging in the known values: \[ y - 7 = 6(x - 1) \] **Simplify the equation:** \[ y - 7 = 6x - 6 \] \[ y = 6x - 6 + 7 \] \[ y = 6x + 1 \] **Answer:** \[ \text{The equation of the tangent line is } y = 6x + 1. \] --- **Summary:** - **(ii)** \( f^{\prime}(1) = 6 \) - **(iii)** Equation of the tangent at \( x = 1 \) is \( y = 6x + 1 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the value of \( f^{\prime}(1) \), we first need to differentiate the function \( f(x)=6x^{2}-6x+7 \). The derivative is \( f^{\prime}(x) = 12x - 6 \). Plugging in \( x=1 \), we get \( f^{\prime}(1) = 12(1) - 6 = 6 \). For the equation of the tangent line at \( x=1 \), we use the point-slope form. The point on the curve at \( x=1 \) is \( f(1) = 6(1)^{2} - 6(1) + 7 = 7 \). With the slope \( m = 6 \), the tangent line's equation is \( y - 7 = 6(x - 1) \), which simplifies to \( y = 6x + 1 \).

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad