\( \lim _ { n \rightarrow \infty } \frac { 4 n ^ { 2 } + n - 1 } { 8 m ^ { 2 } + n } \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the limit \( \lim _ { n \rightarrow \infty } \frac { 4 n ^ { 2 } + n - 1 } { 8 m ^ { 2 } + n } \), we can start by dividing every term in the numerator and the denominator by \( n \), which is the highest power of \( n \) present in the limit: \[ \lim_{n \rightarrow \infty} \frac{4n^2/n + n/n - 1/n}{8m^2/n + n/n} = \lim_{n \rightarrow \infty} \frac{4n + 1 - 1/n}{8m^2/n + 1} \] As \( n \) approaches infinity, the term \( -1/n \) approaches 0, and the term \( 8m^2/n \) also approaches 0. Therefore, we simplify the expression: \[ \lim_{n \rightarrow \infty} \frac{4n + 1 - 0}{0 + 1} = \lim_{n \rightarrow \infty} (4n + 1) = \infty \] Hence, the limit diverges. The final answer is: \[ \infty \]