Pregunta
upstudy study bank question image url

Determine if the function below has a horizontal or a slant asymptote, and explain why. \[ f(x)=\frac{-12 x^{2}-10+23 x}{1-4 x} \] Answer Attempt 1 out of 2 The function has a \( \quad \vee \) asymptote because the degree of the numerator is \( \quad \vee \) the degree of the denominator. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches \( \begin{array}{l}\text {. }\end{array} \)

Ask by Ford Carroll. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function has a slant asymptote because the degree of the numerator is one greater than the degree of the denominator. As \( x \) approaches infinity, \( y \) approaches \( y = 3x - 5 \).

Solución

**Complete Answer:** The function has a **slant (oblique)** asymptote because the degree of the numerator is **one greater than** the degree of the denominator. As \( x \) approaches infinity (positive or negative), the value of \( y \) approaches the line: \[ y = 3x - 5 \] **Explanation:** 1. **Determine the Degrees:** - **Numerator:** \( -12x^{2} + 23x - 10 \) has a degree of **2**. - **Denominator:** \( 1 - 4x \) has a degree of **1**. 2. **Identify the Asymptote Type:** - Since the degree of the numerator (**2**) is **one greater** than the degree of the denominator (**1**), the function has a **slant (oblique) asymptote**. 3. **Find the Slant Asymptote:** - **Perform Polynomial Long Division** of the numerator by the denominator: \[ \frac{-12x^{2} + 23x - 10}{-4x + 1} \] - **First Term:** \( \frac{-12x^{2}}{-4x} = 3x \) - **Multiply and Subtract:** \[ 3x \times (-4x + 1) = -12x^{2} + 3x \] \[ (-12x^{2} + 23x - 10) - (-12x^{2} + 3x) = 20x - 10 \] - **Second Term:** \( \frac{20x}{-4x} = -5 \) - **Multiply and Subtract:** \[ -5 \times (-4x + 1) = 20x - 5 \] \[ (20x - 10) - (20x - 5) = -5 \] - **Result:** The quotient is \( 3x - 5 \) with a remainder of \( -5 \). - **Slant Asymptote Equation:** \( y = 3x - 5 \) 4. **Behavior as \( x \) Approaches Infinity:** - As \( x \) becomes very large (positively or negatively), the remainder term \( \frac{-5}{-4x + 1} \) approaches **0**. - Therefore, \( f(x) \) approaches the slant asymptote \( y = 3x - 5 \). **Final Statement:** \[ \boxed{ \begin{aligned} \text{The function has a } & \text{slant asymptote because the degree of the} \\ & \text{numerator is one greater than the degree of the denominator.} \\ \text{As } x \text{ approaches infinity (positive or negative), the value of } y \text{ approaches } & y = 3x - 5. \end{aligned} } \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the type of asymptote for the function \( f(x)=\frac{-12 x^{2}-10+23 x}{1-4 x} \), we start by examining the degrees of the numerator and the denominator. The degree of the numerator is 2, while the degree of the denominator is 1. Since the degree of the numerator is greater than the degree of the denominator by exactly one, this means that there is a slant (or oblique) asymptote. To find the slant asymptote, we can perform polynomial long division on \( -12x^2 + 23x - 10 \) divided by \( -4x + 1 \). As we divide, the quotient will give us the equation of the slant asymptote. After completing the division, we would end up with a linear expression that represents the slant asymptote, which will be the value \( y \) approaches as \( x \) approaches infinity. So in summary, the function has a slant asymptote because the degree of the numerator is greater than the degree of the denominator, and as \( x \) approaches infinity or negative infinity, \( y \) approaches the value of that linear expression obtained from the division. Now, what if you're looking for a way to tackle similar problems? Well, always compare the degrees of the numerator and denominator first! Remember, if the degrees are equal you’ll have a horizontal asymptote (just check the leading coefficients), and if the numerator's degree exceeds the denominator's by 2 or more, there’s no asymptote at all. Such strategies can keep you organized and clear-headed when faced with function analysis! If you're curious about function behavior, delve into books or online resources about calculus or algebraic functions. Texts that cover limits, asymptotes, and polynomial behavior are particularly handy! Exploring calculus-related websites with interactive graphing tools can also enhance your visual understanding of how these functions behave as they approach infinity or specific values. Happy learning!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad