Pregunta
upstudy study bank question image url

Find the slope of the graph of the function \( f(x)=\sqrt{3 x} \) at \( (3,3) \) Then find an equation of the line tangent to the graph al that point.

Ask by Christensen Mullins. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The slope of the graph at \( (3, 3) \) is \( \frac{1}{2} \), and the equation of the tangent line is \( y = \frac{1}{2}x + \frac{3}{2} \).

Solución

To find the slope of the graph of the function \( f(x) = \sqrt{3x} \) at the point \( (3, 3) \) and determine the equation of the tangent line at that point, follow these steps: ### 1. Find the Derivative \( f'(x) \) The derivative of a function gives the slope of the tangent line at any point \( x \) on the graph. Given: \[ f(x) = \sqrt{3x} = (3x)^{1/2} \] Differentiate \( f(x) \) with respect to \( x \): \[ f'(x) = \frac{d}{dx} \left( (3x)^{1/2} \right) \] Apply the power rule \( \frac{d}{dx} [u^n] = n \cdot u^{n-1} \cdot \frac{du}{dx} \): \[ f'(x) = \frac{1}{2} (3x)^{-1/2} \cdot 3 = \frac{3}{2} (3x)^{-1/2} \] Simplify: \[ f'(x) = \frac{3}{2 \sqrt{3x}} \] ### 2. Evaluate the Derivative at \( x = 3 \) Substitute \( x = 3 \) into \( f'(x) \): \[ f'(3) = \frac{3}{2 \sqrt{3 \times 3}} = \frac{3}{2 \sqrt{9}} = \frac{3}{2 \times 3} = \frac{1}{2} \] **Slope of the tangent line at \( (3, 3) \) is \( \frac{1}{2} \).** ### 3. Find the Equation of the Tangent Line Use the point-slope form of a line: \[ y - y_1 = m(x - x_1) \] Where: - \( m = \frac{1}{2} \) (slope) - \( (x_1, y_1) = (3, 3) \) Substitute the values: \[ y - 3 = \frac{1}{2}(x - 3) \] Simplify to get the equation in slope-intercept form (\( y = mx + b \)): \[ y = \frac{1}{2}x - \frac{3}{2} + 3 \] \[ y = \frac{1}{2}x + \frac{3}{2} \] **Therefore, the equation of the tangent line at the point \( (3, 3) \) is:** \[ y = \frac{1}{2}x + \frac{3}{2} \] ### Summary - **Slope at \( (3, 3) \):** \( \frac{1}{2} \) - **Tangent Line Equation:** \( y = \frac{1}{2}x + \frac{3}{2} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the slope of the graph of the function \( f(x) = \sqrt{3x} \) at the point \( (3, 3) \), we first need to calculate the derivative of \( f(x) \). The derivative \( f'(x) \) is given by: \[ f'(x) = \frac{d}{dx}(\sqrt{3x}) = \frac{1}{2\sqrt{3x}} \cdot 3 = \frac{3}{2\sqrt{3x}}. \] Now, substituting \( x = 3 \) into the derivative to find the slope: \[ f'(3) = \frac{3}{2\sqrt{3 \cdot 3}} = \frac{3}{2 \cdot 3} = \frac{1}{2}. \] Thus, the slope at the point \( (3, 3) \) is \( \frac{1}{2} \). Next, we use the point-slope form of the equation of a line to find the tangent line: \[ y - y_1 = m(x - x_1), \] where \( m \) is the slope and \( (x_1, y_1) \) is the point \( (3, 3) \). Plugging in the values: \[ y - 3 = \frac{1}{2}(x - 3). \] Simplifying gives: \[ y - 3 = \frac{1}{2}x - \frac{3}{2} \implies y = \frac{1}{2}x + \frac{3}{2}. \] Therefore, the equation of the tangent line at the point \( (3, 3) \) is: \[ y = \frac{1}{2}x + \frac{3}{2}. \] This means at \( (3, 3) \), the graph of \( f \) is rising, showcasing how determined the square root function is to grow wider and taller! Isn't it wild how a small change in input can lead to such big consequences in output? If you’re interested in understanding more complex derivatives and their applications, consider diving into calculus textbooks or online resources. You’ll uncover the rich tapestry of mathematics not only in graphs but across various fields such as physics and engineering, where rates of change and slopes can describe everything from velocity to optimization problems!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad