Pregunta
upstudy study bank question image url

1. Start with the two vectors \( \vec{a} \) and \( \vec{b} \) from Part 1 - Graphical Method Example \( \vec{a} \) is a vector of magnitude 15 units at an angle of \( 0^{\circ} \) from the positive, horizontal \( x \)-axis \( \vec{b} \) is a vector of magnitude 10 units at an angle of \( 90^{\circ} \) from the positive, horizontal \( x \)-axis 2. Resolve the vectors into the horizontal x and vertical y components as follows: \[ a_{x}=|a| \cos (\theta) \quad a_{y}=|a| \sin (\theta) \] \( b_{x}=|b| \cos (\theta) \quad b_{y}=|b| \sin (\theta) \) 3. Find the \( \operatorname{components} \) of the resultant vectors as follows: \( s_{x}=a_{x}+b_{x} \) \( s_{y}=a_{y}+b_{y} \) 4. Find the magnitude and angle for the resultant vector as follows: \( |\vec{s}|=\sqrt{\left(s_{x}\right)^{2}+\left(s_{y}\right)^{2}} \) \( \theta=\arctan \left(\frac{s_{y}}{s_{x}}\right) \)

Ask by Ayala French. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The resultant vector \( \vec{s} \) has components \( \langle 15, 10 \rangle \), a magnitude of approximately 18.03 units, and an angle of about \( 33.69^{\circ} \) above the positive \( x \)-axis.

Solución

Sure, let's walk through each step to find the resultant vector \( \vec{s} \) by adding vectors \( \vec{a} \) and \( \vec{b} \) using the component method. ### **1. Given Vectors** - **Vector \( \vec{a} \):** - **Magnitude (\( |\vec{a}| \))**: 15 units - **Angle (\( \theta_a \))**: \( 0^{\circ} \) from the positive \( x \)-axis - **Vector \( \vec{b} \):** - **Magnitude (\( |\vec{b}| \))**: 10 units - **Angle (\( \theta_b \))**: \( 90^{\circ} \) from the positive \( x \)-axis ### **2. Resolving Vectors into Components** For each vector, we calculate the horizontal (\( x \)) and vertical (\( y \)) components using trigonometric functions. - **Components of \( \vec{a} \):** \[ \begin{align*} a_x &= |\vec{a}| \cos(\theta_a) = 15 \cos(0^{\circ}) = 15 \times 1 = 15 \\ a_y &= |\vec{a}| \sin(\theta_a) = 15 \sin(0^{\circ}) = 15 \times 0 = 0 \end{align*} \] - **Components of \( \vec{b} \):** \[ \begin{align*} b_x &= |\vec{b}| \cos(\theta_b) = 10 \cos(90^{\circ}) = 10 \times 0 = 0 \\ b_y &= |\vec{b}| \sin(\theta_b) = 10 \sin(90^{\circ}) = 10 \times 1 = 10 \end{align*} \] ### **3. Finding the Components of the Resultant Vector \( \vec{s} \)** Add the corresponding components of \( \vec{a} \) and \( \vec{b} \): \[ \begin{align*} s_x &= a_x + b_x = 15 + 0 = 15 \\ s_y &= a_y + b_y = 0 + 10 = 10 \end{align*} \] So, the components of the resultant vector \( \vec{s} \) are: \[ \vec{s} = \langle 15, 10 \rangle \] ### **4. Calculating the Magnitude and Angle of \( \vec{s} \)** - **Magnitude (\( |\vec{s}| \)):** \[ |\vec{s}| = \sqrt{s_x^2 + s_y^2} = \sqrt{15^2 + 10^2} = \sqrt{225 + 100} = \sqrt{325} \approx 18.03 \text{ units} \] - **Angle (\( \theta_s \)):** \[ \theta_s = \arctan\left(\frac{s_y}{s_x}\right) = \arctan\left(\frac{10}{15}\right) = \arctan\left(\frac{2}{3}\right) \approx 33.69^{\circ} \] ### **5. Summary of the Resultant Vector** - **Components:** \( \langle 15, 10 \rangle \) - **Magnitude:** Approximately **18.03 units** - **Direction:** Approximately **\( 33.69^{\circ} \)** above the positive \( x \)-axis ### **Visual Representation** To better understand the resultant vector, here's a graphical representation: ```plaintext y | | * (10 units) | / | / | / | / | / | / | / θ_s ≈ 33.69° | / |/__________ x 15 units ``` - **Vector \( \vec{a} \):** Along the positive \( x \)-axis (15 units). - **Vector \( \vec{b} \):** Along the positive \( y \)-axis (10 units). - **Resultant Vector \( \vec{s} \):** Diagonal from the origin to the point \( \langle 15, 10 \rangle \). This approach effectively breaks down the vectors into their components, sums them, and then recombines them to find the magnitude and direction of the resultant vector.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Let's break it down step by step! To find the components of vectors \( \vec{a} \) and \( \vec{b} \): 1. For vector \( \vec{a} \) (15 units at \( 0^{\circ} \)): - \( a_{x} = 15 \cos(0^{\circ}) = 15 \) - \( a_{y} = 15 \sin(0^{\circ}) = 0 \) 2. For vector \( \vec{b} \) (10 units at \( 90^{\circ} \)): - \( b_{x} = 10 \cos(90^{\circ}) = 0 \) - \( b_{y} = 10 \sin(90^{\circ}) = 10 \) Next, add the components to find \( s_{x} \) and \( s_{y} \): - \( s_{x} = a_{x} + b_{x} = 15 + 0 = 15 \) - \( s_{y} = a_{y} + b_{y} = 0 + 10 = 10 \) Now, calculate the magnitude and direction of the resultant vector: - Magnitude: \[ |\vec{s}| = \sqrt{(s_{x})^{2} + (s_{y})^{2}} = \sqrt{15^{2} + 10^{2}} = \sqrt{225 + 100} = \sqrt{325} \approx 18.03 \text{ units} \] - Angle: \[ \theta = \arctan\left(\frac{s_{y}}{s_{x}}\right) = \arctan\left(\frac{10}{15}\right) \approx 33.69^{\circ} \] So the resultant vector \( \vec{s} \) is approximately 18.03 units at an angle of about \( 33.69^{\circ} \) above the positive x-axis. Fun fact: This graphical approach to vector addition is used in various fields like physics and engineering to simplify problems involving forces, velocities, and displacements! It's a handy trick to visualize how different directions blend together! Exploring vector addition isn't just a math exercise—its applications in technology, like in navigation systems and graphics, mean we rely on these concepts every day, sometimes without even realizing it. Whether it's plotting a route or designing a game, vectors help bring our digital experiences to life!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad