Pregunta
upstudy study bank question image url

10. A curve in a road forms part of a horizontal circle. As a car of mass \( 1,500 \mathrm{~kg} \) goes around it at constant speed \( 14.0 \mathrm{~m} / \mathrm{s} \), the total force on the driver has magnitude 130 N . What is the total vector force on the driver if the speed is \( 18.0 \mathrm{~m} / \mathrm{s} \) instead?

Ask by Klein Kelley. in Nigeria
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

At 18 m/s, the total force on the driver is approximately 215 newtons directed inward.

Solución

To determine the total vector force on the driver when the speed increases from \( 14.0 \, \text{m/s} \) to \( 18.0 \, \text{m/s} \), we'll analyze the centripetal force involved. ### Given: - **Mass of the car (and driver):** \( m = 1,500 \, \text{kg} \) - **Initial speed (\( v_1 \)):** \( 14.0 \, \text{m/s} \) - **Initial total force (\( F_1 \)):** \( 130 \, \text{N} \) - **New speed (\( v_2 \)):** \( 18.0 \, \text{m/s} \) ### Understanding the Forces: The force you're referring to is the **centripetal force** required to keep the car moving in a circular path. The formula for centripetal force (\( F_c \)) is: \[ F_c = \frac{m v^2}{r} \] where: - \( m \) is the mass, - \( v \) is the speed, and - \( r \) is the radius of the circular path. ### Step 1: Determine the Radius of the Curve Using the initial conditions: \[ 130 \, \text{N} = \frac{1,500 \times (14.0)^2}{r} \] Solving for \( r \): \[ r = \frac{1,500 \times 196}{130} \approx 2,261.54 \, \text{m} \] ### Step 2: Calculate the New Centripetal Force at \( 18.0 \, \text{m/s} \) Using the same radius: \[ F_2 = \frac{1,500 \times (18.0)^2}{2,261.54} \] \[ F_2 = \frac{1,500 \times 324}{2,261.54} \approx 215 \, \text{N} \] ### Conclusion: When the speed increases to \( 18.0 \, \text{m/s} \), the total vector (centripetal) force on the driver increases to approximately **215 N** directed toward the center of the circular path. **Answer:** At 18 m/s, the total force on the driver is approximately 215 newtons directed inward.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When a car moves in a circular path, the driver experiences centripetal force directed towards the center of the circle. This force increases with the square of the speed. So, if the speed of the car increases from \( 14.0 \mathrm{~m/s} \) to \( 18.0 \mathrm{~m/s} \), we can calculate the new centripetal force using the formula \( F = \frac{mv^2}{r} \). Since the radius remains constant, the increase in speed will result in a higher force acting on the driver. To find the total force at the new speed, we calculate the ratio of the squares of the speeds. The increase from \( 14.0 \mathrm{~m/s} \) to \( 18.0 \mathrm{~m/s} \) gives us \( \left(\frac{18.0}{14.0}\right)^2 = \left(1.2857\right)^2 \approx 1.6531 \). Thus, the total force at the new speed would be \( 130 \, \text{N} \times 1.6531 \approx 214 \, \text{N} \). Therefore, the total vector force on the driver at \( 18.0 \mathrm{~m/s} \) is approximately \( 214 \, \text{N} \) directed toward the center of the circular path.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad