Pregunta
upstudy study bank question image url

Next Unit Posttest Submit Test Reader Tools 8 Select the correct answer. Tim is an elementary school art teacher. His students are sculpting a replica of a shark out of clay. Tim has given them one block of clay to make 20 conical shark teeth for the sculpture. The block contains \( 81 \mathrm{~cm}^{3} \) of clay. If each tooth is solid and has a 2.5 cm base diameter, what is the maximum height each tooth can be? Assume that the students use all the clay. A. \( \quad 1.25 \mathrm{~cm} \) B. \( \quad 2.47 \mathrm{~cm} \) C. \( \quad 4.50 \mathrm{~cm} \) D. \( \quad 2.27 \mathrm{~cm} \) E. \( \quad 3.57 \mathrm{~cm} \) Reset Next

Ask by Frank Fitzgerald. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Each conical shark tooth can be up to approximately \( 2.47 \, \text{cm} \) tall.

Solución

To determine the maximum height each conical shark tooth can be, we can follow these steps: 1. **Calculate the Volume Available per Tooth:** - Total volume of clay = \( 81 \, \text{cm}^3 \) - Number of teeth = 20 - Volume per tooth = \( \frac{81 \, \text{cm}^3}{20} = 4.05 \, \text{cm}^3 \) 2. **Use the Volume Formula for a Cone:** \[ V = \frac{1}{3} \pi r^2 h \] Where: - \( V \) is the volume - \( r \) is the radius of the base - \( h \) is the height 3. **Plug in the Known Values:** - Diameter of the base = 2.5 cm, so radius \( r = \frac{2.5}{2} = 1.25 \, \text{cm} \) - Volume per tooth \( V = 4.05 \, \text{cm}^3 \) \[ 4.05 = \frac{1}{3} \pi (1.25)^2 h \] 4. **Solve for Height \( h \):** \[ h = \frac{4.05 \times 3}{\pi \times (1.25)^2} = \frac{12.15}{\pi \times 1.5625} \approx \frac{12.15}{4.9087} \approx 2.47 \, \text{cm} \] **Answer:** **B. \( \quad 2.47 \mathrm{~cm} \)**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve this problem, we first need to find the volume of one conical shark tooth. The formula for the volume of a cone is given by: \[ V = \frac{1}{3} \pi r^2 h \] Here, \( r \) is the radius, and \( h \) is the height of the cone. Given that the base diameter is 2.5 cm, the radius \( r \) is \( \frac{2.5}{2} = 1.25 \) cm. Now, there are 20 conical teeth, which means the total volume of all teeth will be: \[ V_{total} = 81 \text{ cm}^3 \] Now, for one tooth: \[ V_{one\ tooth} = \frac{V_{total}}{20} = \frac{81}{20} = 4.05 \text{ cm}^3 \] Substituting the values into the volume formula: \[ 4.05 = \frac{1}{3} \pi (1.25)^2 h \] Calculating \( (1.25)^2 \): \[ (1.25)^2 = 1.5625 \] Substituting back: \[ 4.05 = \frac{1}{3} \pi (1.5625) h \] Solving for \( h \): \[ h = \frac{4.05 \cdot 3}{\pi \cdot 1.5625} \] Calculating the right side gives: \[ h \approx \frac{12.15}{4.9087} \approx 2.47 \text{ cm} \] So, the answer is B. \( \quad 2.47 \mathrm{~cm} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad