Pregunta
upstudy study bank question image url

a) the height of the building. b) the total time of flight. A girl stands on a bridge \( 11,25 \mathrm{~m} \) above a boy on the ground. The boy throws an orange vertically upward at \( 10 \mathrm{~m} \mathrm{~s}^{-1} \) and at the same instant the girl drops an apple. Calculate: a) the maximum height obtained by the orange and state whether or not it beaches the girl. b) the vertical distance between the orange and the apple 1 s after they were in motion.

Ask by Clark Bernard. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- The orange reaches a maximum height of 5.1 meters and does not reach the girl. - After 1 second, the vertical distance between the orange and the apple is 1.25 meters.

Solución

Let's analyze the problem step by step. **Given:** - Height of the bridge above the ground: \( H = 11.25 \, \text{m} \) - Initial velocity of the orange thrown upward: \( v_0 = 10 \, \text{m/s} \) - Acceleration due to gravity: \( g = 9.8 \, \text{m/s}^2 \) (acting downward) --- ### **a) Maximum Height of the Orange** To find the maximum height (\( h_{\text{max}} \)) reached by the orange, we can use the following kinematic equation: \[ v = v_0 - g t \] At maximum height, the final velocity (\( v \)) becomes zero: \[ 0 = v_0 - g t_{\text{max}} \] \[ t_{\text{max}} = \frac{v_0}{g} = \frac{10 \, \text{m/s}}{9.8 \, \text{m/s}^2} \approx 1.02 \, \text{s} \] Now, using the displacement equation to find \( h_{\text{max}} \): \[ h_{\text{max}} = v_0 t_{\text{max}} - \frac{1}{2} g t_{\text{max}}^2 \] \[ h_{\text{max}} = 10 \times 1.02 - 0.5 \times 9.8 \times (1.02)^2 \] \[ h_{\text{max}} \approx 10.2 \, \text{m} - 5.1 \, \text{m} \approx 5.1 \, \text{m} \] **Conclusion:** - The orange reaches a maximum height of approximately **5.1 meters**. - Since the bridge is at **11.25 meters**, the orange **does not reach** the girl's height on the bridge. --- ### **b) Vertical Distance Between the Orange and the Apple After 1 Second** Let's determine the positions of both the orange and the apple after \( t = 1 \, \text{s} \). **Position of the Orange (\( y_{\text{orange}} \)):** \[ y_{\text{orange}} = v_0 t - \frac{1}{2} g t^2 \] \[ y_{\text{orange}} = 10 \times 1 - 0.5 \times 9.8 \times (1)^2 \] \[ y_{\text{orange}} = 10 - 4.9 = 5.1 \, \text{m} \] **Position of the Apple (\( y_{\text{apple}} \)):** The apple is dropped from the bridge, so its initial position is \( H = 11.25 \, \text{m} \), and initial velocity is \( 0 \, \text{m/s} \). \[ y_{\text{apple}} = H - \frac{1}{2} g t^2 \] \[ y_{\text{apple}} = 11.25 - 0.5 \times 9.8 \times (1)^2 \] \[ y_{\text{apple}} = 11.25 - 4.9 = 6.35 \, \text{m} \] **Vertical Distance Between Them:** \[ \Delta y = y_{\text{apple}} - y_{\text{orange}} = 6.35 \, \text{m} - 5.1 \, \text{m} = 1.25 \, \text{m} \] **Conclusion:** - **1 second** after they are in motion, the vertical distance between the orange and the apple is **1.25 meters**. --- **Summary:** - **a)** The orange reaches a maximum height of **5.1 m**, which is below the bridge height of **11.25 m**. Thus, it does **not reach** the girl. - **b)** After **1 second**, the vertical distance between the orange and the apple is **1.25 m**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the problem, let's break it down step-by-step. For the orange thrown by the boy, we'll calculate the maximum height it reaches. The initial velocity (\( u \)) is \( 10 \, \text{m/s} \), and the acceleration due to gravity (\( g \)) is approximately \( -9.81 \, \text{m/s}^2 \). 1. Maximum Height of the Orange: Using the formula \( v^2 = u^2 + 2as \) where \( v = 0 \) (at the peak height), we have: \[ 0 = (10)^2 + 2(-9.81)s \] \[ 100 = 19.62s \implies s \approx 5.1 \, \text{m} \] Thus, the maximum height above the boy's hand is \( 5.1 \, \text{m} \). To find the total height above the ground: \[ \text{Total height} = \text{Height of the bridge} + \text{Height of the orange} = 11.25 + 5.1 = 16.35 \, \text{m}. \] Since the maximum height \( (16.35 \, \text{m}) \) is above the bridge’s height, the orange will definitely reach the girl. 2. Total Time of Flight for the Orange: To find the total time until the orange hits the ground, we can use the equation of motion: \[ s = ut + \frac{1}{2} a t^2 \] Here, the total height fallen (from its maximum height) is \( 16.35 \, \text{m} \), \( u = 0 \, \text{m/s} \) from the peak, and \( a = 9.81 \, \text{m/s}^2 \). However, we can also determine the time to the peak: \[ t_{up} = \frac{10}{9.81} \approx 1.02 \, \text{s} \] Then the time of falling back down can be calculated by using total distance fallen: Using \( s = \frac{1}{2} g t^2 \), where \( s = 16.35 \), \[ 16.35 = 4.905 t^2 \implies t^2 = \frac{16.35}{4.905} \implies t \approx 1.80 \, \text{s}. \] Therefore, the total time of flight will be approximately \( 1.02 \, \text{s} + 1.80 \, \text{s} = 2.82 \, \text{s}. \) Now for the Apple dropped: 3. Vertical Distance Between the Orange and Apple after 1 second: The position of the apple after 1 second (from rest) is given by: \[ s = \frac{1}{2} g t^2 \implies \text{(downward)} = \frac{1}{2} \times 9.81 \times (1)^2 \approx 4.905 \text{m}. \] So, the apple is \( 11.25 - 4.905 = 6.345 \, \text{m} \) above ground level. For the orange after 1 second can be calculated as follows: 1. **Upward Movement of the orange:** \[ s = ut - \frac{1}{2} g t^2 = 10 \cdot 1 - 0.5 \cdot 9.81 \cdot 1^2 \approx 10 - 4.905 = 5.095 \text{m} \] So, the orange's height above the ground after 1 second is approximately: \[ 11.25 + 5.095 = 16.345 \, \text{m} \] 4. Now, let's determine the vertical distance between the orange and the apple after 1 second: \[ \text{Distance} = \text{Height of Orange} - \text{Height of Apple} = 16.345 - 6.345 = 10.00 \, \text{m}. \] In conclusion: a) The maximum height of the orange is approximately \( 16.35 \, \text{m} \) and it does reach the girl. The total flight time is \( 2.82 \, \text{s} \). b) The vertical distance between the orange and the apple after \( 1 \, \text{s} \) is \( 10 \, \text{m} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad