Find the exact value of each of the following under the given conditions below. \( \tan \alpha=-\frac{5}{12}, \frac{\pi}{2}<\alpha<\pi ; \cos \beta=\frac{\sqrt{3}}{2}, 0<\beta<\frac{\pi}{2} \) \( \begin{array}{llll}\text { (a) } \sin (\alpha+\beta) & \text { (b) } \cos (\alpha+\beta) & \text { (c) } \sin (\alpha-\beta) & \text { (d) } \tan (\alpha-\beta)\end{array} \) (a) \( \sin (\alpha+\beta)=\frac{5 \sqrt{3}-12}{26} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) (b) \( \cos (\alpha+\beta)=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find \(\cos(\alpha + \beta)\), we use the formula: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] First, we need to find \(\sin \alpha\) and \(\cos \alpha\). From the given \(\tan \alpha = -\frac{5}{12}\) and noting that \(\alpha\) is in the second quadrant: - Opposite side = -5 (since tangent is negative in the second quadrant) - Adjacent side = 12 (positive in the second quadrant) Using the Pythagorean theorem: \[ \sqrt{(-5)^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169} = 13 \] Thus, we have: - \(\sin \alpha = \frac{opposite}{hypotenuse} = \frac{-5}{13} \quad (\text{negative in quadrant II})\) - \(\cos \alpha = \frac{adjacent}{hypotenuse} = \frac{12}{13} \quad (\text{positive in quadrant II})\) For \(\beta\), since \(\cos \beta = \frac{\sqrt{3}}{2}\) and \(\beta\) is in the first quadrant, we have: - \(\sin \beta = \sqrt{1 - \cos^2 \beta} = \sqrt{1 - \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{1 - \frac{3}{4}} = \sqrt{\frac{1}{4}} = \frac{1}{2}\) Now substituting into our formula: \[ \cos(\alpha + \beta) = \left(\frac{12}{13}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{-5}{13}\right) \left(\frac{1}{2}\right) \] Calculating this gives: \[ \cos(\alpha + \beta) = \frac{12\sqrt{3}}{26} + \frac{5}{26} = \frac{12\sqrt{3} + 5}{26} \] So the answer for part (b) is: (b) \( \cos (\alpha+\beta) = \frac{12\sqrt{3} + 5}{26} \)