Write the following in terms of \( \sin (x) \) and \( \cos (x) \), and then simplify if possible. Leave your answer in terms of sines and cosines only. \( \frac{\sec (x)}{\tan (x)}=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To express \( \frac{\sec (x)}{\tan (x)} \) in terms of \( \sin (x) \) and \( \cos (x) \), we use the definitions of secant and tangent: \[ \sec(x) = \frac{1}{\cos(x)} \quad \text{and} \quad \tan(x) = \frac{\sin(x)}{\cos(x)}. \] Now, substituting these into the expression gives: \[ \frac{\sec(x)}{\tan(x)} = \frac{\frac{1}{\cos(x)}}{\frac{\sin(x)}{\cos(x)}}. \] When you divide by a fraction, it’s the same as multiplying by its reciprocal: \[ = \frac{1}{\cos(x)} \cdot \frac{\cos(x)}{\sin(x)}. \] Now, the \( \cos(x) \) terms cancel each other out: \[ = \frac{1}{\sin(x)} = \csc(x). \] Thus, simplified, we have: \[ \frac{\sec(x)}{\tan(x)} = \frac{1}{\sin(x)}. \]