Write the following in terms of \( \sin (x) \) and \( \cos (x) \), and then simplify if possible. Leave your answer in terms of sines and cosines only. \( \cot (x)-\csc (x)=\square \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To express \( \cot(x) \) and \( \csc(x) \) in terms of \( \sin(x) \) and \( \cos(x) \): 1. The cotangent function is defined as: \[ \cot(x) = \frac{\cos(x)}{\sin(x)} \] 2. The cosecant function is defined as: \[ \csc(x) = \frac{1}{\sin(x)} \] Now substituting these definitions into the expression \( \cot(x) - \csc(x) \): \[ \cot(x) - \csc(x) = \frac{\cos(x)}{\sin(x)} - \frac{1}{\sin(x)} \] Since both terms have a common denominator, we can combine them: \[ = \frac{\cos(x) - 1}{\sin(x)} \] Thus, the final expression is: \[ \cot(x) - \csc(x) = \frac{\cos(x) - 1}{\sin(x)} \]