Pregunta
upstudy study bank question image url

\( \mid<\quad \) Find the intercepts of \( 6 y-42=-21 x \) and then graph the line.

Ask by Beck Fitzgerald. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the intercepts of the equation \(6y - 42 = -21x\): - **x-intercept:** \((2, 0)\) - **y-intercept:** \((0, 7)\) Plot these points and draw a straight line through them to graph the equation.

Solución

To find the intercepts of the equation \(6y - 42 = -21x\) and graph the line, follow these steps: ## 1. Find the **x-intercept** The **x-intercept** is the point where the line crosses the x-axis. At this point, the value of \(y\) is **0**. **Steps:** 1. Set \(y = 0\) in the equation. 2. Solve for \(x\). **Calculation:** \[ 6(0) - 42 = -21x \\ -42 = -21x \\ x = \frac{-42}{-21} = 2 \] **x-intercept:** \((2,\ 0)\) ## 2. Find the **y-intercept** The **y-intercept** is the point where the line crosses the y-axis. At this point, the value of \(x\) is **0**. **Steps:** 1. Set \(x = 0\) in the equation. 2. Solve for \(y\). **Calculation:** \[ 6y - 42 = -21(0) \\ 6y - 42 = 0 \\ 6y = 42 \\ y = 7 \] **y-intercept:** \((0,\ 7)\) ## 3. Graphing the Line To graph the line: 1. **Plot the intercepts:** - Plot the **x-intercept** at \((2,\ 0)\). - Plot the **y-intercept** at \((0,\ 7)\). 2. **Draw the line:** - Use a ruler to draw a straight line passing through both intercepts. - Extend the line in both directions and add arrows to indicate that it continues indefinitely. 3. **Label the intercepts:** - Label the points \((2,\ 0)\) and \((0,\ 7)\) for clarity. ### Visual Representation: While I can't provide a visual graph here, here's a description of how it would appear: - The line crosses the x-axis at \((2, 0)\) and the y-axis at \((0, 7)\). - Since the slope is negative, the line descends from left to right. Alternatively, you can use graphing tools like [Desmos](https://www.desmos.com/) or graph paper to plot the points and draw the line accurately. ## 4. Slope-Intercept Form (Optional) For additional insight, you can rewrite the equation in the **slope-intercept form** (\(y = mx + b\)), where \(m\) is the slope and \(b\) is the y-intercept. **Steps:** \[ 6y - 42 = -21x \\ 6y = -21x + 42 \\ y = \frac{-21}{6}x + 7 \\ y = -\frac{7}{2}x + 7 \] **Interpretation:** - **Slope (\(m\))**: \(-\frac{7}{2}\) - This means for every increase of 2 units in \(x\), \(y\) decreases by 7 units. - **y-intercept (\(b\))**: \(7\) - Confirms the y-intercept point \((0,\ 7)\) found earlier. ## Summary - **x-intercept:** \((2,\ 0)\) - **y-intercept:** \((0,\ 7)\) - **Slope:** \(-\frac{7}{2}\) - **Graph:** A straight line passing through \((2,\ 0)\) and \((0,\ 7)\), descending from left to right. Feel free to plot these points on graph paper or use an online graphing tool to visualize the line.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the intercepts of the equation \( 6y - 42 = -21x \), let's first rewrite it in slope-intercept form, \( y = mx + b \): 1. Rearranging gives us: \( 6y = -21x + 42 \) \( y = -\frac{21}{6}x + 7 \) Simplifying the fraction, we have: \( y = -\frac{7}{2}x + 7 \) Now, we can easily find the intercepts: - **Y-intercept**: Set \( x = 0 \): \( y = 7 \) So, the y-intercept is \( (0, 7) \). - **X-intercept**: Set \( y = 0 \): \( 0 = -\frac{7}{2}x + 7 \) \( \frac{7}{2}x = 7 \) \( x = 2 \) Therefore, the x-intercept is \( (2, 0) \). Now, we can graph the line using these intercepts! Plot the points \( (0, 7) \) and \( (2, 0) \) on a coordinate plane and draw a straight line through them. This gives you a visual representation of the linear equation! Happy graphing! 🎉

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad